
1

PYTHON
NOVICE TO NINJA

Raspberry Pi
Edition

Bruce Smith

2 3

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

CONTENTS
00: Novice to Ninja .. 13

Raspberry Pi Versions ...14
Python Types ..16

01: Hello .. 17
Pi Space ..19
Python Uses ..20
Learning ...21
Checking In ...24

02: Python Interactive 25
IDE ..25
Trying It Out ...28
A Real Program ..28
Thonny Windows ...30
The Raspberry Pi File System ..31
Important Line Wraps ...33
Questions ..34

03: A Matter of Style 35
Object-Oriented Programming ...35
The Block ..36
Constructor and Attributes ..37
Inheritance and Polymorphism ..38
Class Instance ...38
Derived Classes ..40
Methods in the House Class ...40
Classes Galore ..41
Polymorphism Example ..42
Programming OOP ...43
Combining Snippets into a Full Program44
Questions ..44

4 5

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

04: Foundations .. 45
Modules and Libraries ...48
Python Interactive Shell ..50
Terminal Shell ...51
Bytecode ..52
Python Virtual Machine (PVM) ...54
The Answer ...54

05: Environments .. 57
Version Numbers ...58
Virtual Environments with Thonny59
Questions ..62

06: Variables & Strings 63
String Theory ..65
Chopping Up Made Easy ..68
Haystack Needle ...69
The Dynamic Duo ...70
The Other Dynamic Duo ...70
Case Swapping ..72
Reversing a String ...73
Passing Multiple Arguments ...74
Object Type ...77
f-Strings ...79
Question ..79

07: Loops ... 81
For Loop ...83
While Loop ...83
Loop Control Statements ...83
Nested Loops ...84
Else Statements ..85
Looping with an Index ..87
Nested Loops ...89
Question ..91

08: Lists ... 93
Common Lists ..94
Working with List Operators ..95
Working With Different Lengths 100
When to Use List Comprehension 101
Changing List Elements ... 102
Adding Elements to a List ... 103
Some Handy List Operations .. 103
Counting, Finding, Sorting & Multidimensional 106
Exercise: Putting It All Together 107

09: Dictionaries ... 109
Dictionaries and OOP .. 113
Similar But Different .. 115

10: Sets ... 123
Modifying Sets ... 126
Which One Where? .. 128
Questions ... 128

11: Tuples .. 129
So Special .. 129
When and How to Use Tuples .. 130
Tuple Methods ... 133
Tuple Packing and Unpacking ... 134
Single-Element Tuples .. 135
Why Choose Tuples Over Dictionaries? 135
Tuples vs. Lists: ... 137
Using enumerate() ... 138
Tuples vs. Lists: What’s the Difference? 140
The Zipper ... 140
Practical Uses for zip .. 142
Questions ... 143

12: Stacks & Queues 145
Using a List as a Stack or Queue 147
First-In-First-Out (FIFO) .. 148
Queue Module (Queue Class) ... 148
Deque .. 150
Use Cases for Deques .. 151
Exercise: Mastering Stacks and Queues 152

13: Deep and Shallow 155
Whow! ... 156
Another Look at Shallow Copy 157
Deep Copy: The Real Deal .. 160
When to Use a Shallow Copy .. 162
Exercise: Deep and Shallow Copying 164

14: Environments + 167
Common Issues and Troubleshooting 170
APT and PIP ... 170
Pip Pip3 Hooray! ... 173
Is it Apt for the Raspberry Pi ? 175
Questions ... 175

15: More Thonny ... 177
Use a Debugger ... 181
Debugging in Thonny .. 181
Thonny In and Out .. 182
Questions ... 185

16: In and Out ... 187
Handling Errors and Validation 188
Capturing Multiple Inputs at Once 190

6 7

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

Input with Validation: A Menu Example 192
Common Input Mistakes to Avoid 193
Exercise: Using Input and Output 193

17: File Handling .. 195
Opening, Reading and Reading Files195
Renaming Files .. 198
Checking File Existence ... 199
Inserting Data into a File ... 199
Shutil Module ... 199
File Tree Management .. 200
Archiving and Compression .. 200
Deleting and Copying a Directory Tree 202
Context Managers ... 203
Error Handling .. 203
Handling File Errors with Try-Except 204
Using else and finally .. 204
File Permissions .. 204
Stat Module .. 206
Processing a File .. 209
Handling Large Files ... 210
Passing File Objects: ... 210
Tempfile Module ... 210
Questions ... 212

18: CSV and JSON .. 213
Dictionary of Lists: ... 217
What is JSON? .. 219
Configuration Files ... 221
JSON config File ... 223
Handling JSON Errors .. 225

19: Path & Pythonpath 227
Virtual Environments and $PATH 228
pathlib ... 229
PTYHONPATH ... 231
PATH vs. PYTHONPATH ... 232
Questions ... 234

20: OS Module .. 233
Questions ... 234
Writing a List of Files in a Directory to a List 235
Listing Directories and Sub-directories 236
Directories, Sub-directories, and Files 236
Capturing Output .. 237
Environmental Variables .. 239

21: Regular Expressions 241
Useful Functions ... 242
Common Regular Expressions 243

Metacharacters ... 247
Greedy Matching ... 248
Lazy (Non-Greedy) Matching: .. 249
Exploring Regular Expressions 251

22: Exceptions ... 253
Handling Multiple Exceptions .. 254
Exception Hierarchy ... 256
Common Mistakes Using Exceptions 258

23: Math .. 261
Trig, Exponential, and Log Functions 264
Using Math Constants .. 265
More Math Operations .. 267
The Math Module ... 268
Trigonometric and Logarithmic Functions 269
Questions ... 276

24: Advanced Functions 277
Namespace and Scope .. 278
The Lambda Function .. 281
It’ s About Closure .. 283
Understanding Decorators .. 284
How Decorators Differ from Regular Functions 288
Understanding Recursion .. 289
Generator Power ... 290
LEGB Rule .. 292
Shadowing .. 293
Avoid Shadowing .. 294
Shadowing Example and Resolution 295
Questions ... 297

 25: Matrix ... 299
Creating a Matrix Using a Nested List 301
Adding Matrices Together ... 301
Subtraction ... 302
Questions ... 303

26: Linters ... 305
Who Decides? .. 305
Style Documentation .. 305
Popular Linters .. 306
Pylint ... 309
Autopep8 Linter .. 310
Format a Python File .. 311
Black Linter .. 312
Questions ... 313

27: Geany IDE .. 315
Debugging with PDB ... 319

8 9

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

Virtual Environments ... 322
Geany Plugins .. 323
Makefile .. 234

28: Enviro Switching 325
Your Project's Best Friend ... 326
Tips for Using requirements.txt 327
pipenv ... 328
Environmental Variable .. 329
Folders .. 330
Welcome to the Magnificent virtualenvwrapper 331
Commands Available .. 333
Geany Virtual Environment Switching 333

29: sys Module .. 341

30: abc Module ... 345
Real-World Scenarios .. 348
Metaclasses ... 349
What Are Decorators Really Doing? 350
Common Pitfalls with ABCs ... 352
Questions ... 352

31: datetime Module 353
Time Zone Handling with zoneinfo 355
Comparing Dates and Times .. 355
Questions ... 356

32: RPi Graphics ... 357
Tick-Tock It’s a Clock ... 359
Organise with Frames .. 365
Framing Menus .. 367
Questions ... 368

33: PyGame ... 369
Setup .. 370
Paddle Operation .. 372
Catch a Falling Star and Scoring 373
Sound .. 377
Event Handling and Program Loop 378
Optimising Performance .. 379

34: Pillow ... 381

35: NumPy .. 387
Values as a Variable Name ... 391
Indexing and Slicing NumPy Arrays 392
Broadcasting ... 393
Append, Delete, and Insert ... 395
Copying Arrays in NumPy .. 396

Array Properties in NumPy ... 398
Common Dot Options for NumPy Arrays 399
Exploring NumPy Data Types (dtypes) 401
Why is this all so Important? ... 405
Questions ... 406

36: Pandas ... 407
Creating a Pandas Series ... 408
DataFrames from Different Types of Data 409
All Together Now ... 412
Data Cleaning .. 414
Chained Assignment in Pandas 416
Essential Pandas Functionality in Action 417
Exploring Pandas Dot Methods 420
Wrapping Up ... 422
DataFrame-NumPy Array Structure Differences 423
Data Manipulation Together ... 424
Moving Data Between Pandas and NumPy 425
Key Differences ... 425
When to Use Each .. 426
Exercise: Numpy and Pandas .. 427

37: Matplotlib Visuals 429
Geographical Representations .. 436

38: Dunder Methods 439
Practical Use ... 441
Why Use Dunder Methods Instead of List 442
Operator Overloading: ... 443
Custom Comparisons ... 444
Callable Objects ... 442
Dunder Methods for Containers 445

39: APIs ... 447
OpenWeatherMap Step-by-Step 451
How Many API keys Needed? .. 455
Questions ... 456

40: Writing Modules 457
What Functions Are in a Module? 463

41: Building Websites 461
Adding HTML templates ... 463
Background Flask .. 465

42: Docstrings ... 467
Sphinx ... 468
Worked Example ... 469

10 11

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

43: GPIO and HATS 473
The Hardware Shift .. 473
Common HAT Patterns ... 477

44: Makefile ... 481

45: A Final Word ... 487

Index ... 485

IMPORTANT NOTE
Python programs follow a style guideline known as PEP8, which will be
covered later in this book. Although PEP8 helps maintain consistency, it is
not required for a program to run correctly. One of the guidelines suggests
including two blank lines between certain sections of code, but this will not
always be followed in the listings here. This is to reduce whitespace.

PROGRAMS AND QUESTIONS
There are over 250 programs in this book. I suggest that you type in as many
of these as you can, rather than loading them in from the files. Typing is the
best way to learn and get a feeling for the commands, syntax and flow of a
Python program. Learn how to correct and ensure your coding is correct and
works. Bear in mind that some program lines extend longer than the space
available across the width of the book. As such they will often ‘wrap-around’
onto the next line. That said the programs are available to download from
the website at:

xxxxxxxxxxxx

QUESTIONS AND EXERCISES
Most chapters, not all, contain questions at the end. These questions are
related to the text in the chapter just read. There are up to 15 questions. No
answers are provided in the book, they are there for you to answer or review
the contents of the chapter prior to answering. Exercises include answers,
but remember my solution may be different to yours, but as long as you get
the right result that’s it! You’ll also find more exercises on the downloads file.

00: Novice to Ninja
What does novice and ninja mean regarding learning to program Python on
the Raspberry Pi? There are many books for programmers who are starting
their Python experience. But they cover the basics and don’t actually get
under the ‘hood’ and into the detail. They leave you in the hallway, and don't
show the rest of the house. Within these pages I seek to correct that and take
you to those places beyond the hallway, providing a higher level of
knowledge and expertise to transform you from a complete beginner (or
intermediate), who’s just learning the ropes, to a skilled and confident Python
coder. Merriam-Webster defines each word thus:

 ● A novice in computer terms can be defined as a beginner or
someone who has no previous experience in a particular field or
activity.

 ● On the other hand, ninja isn't typically defined in the same way in
dictionaries. In popular usage, it's often used to describe someone
who has achieved a high level of skill or expertise. An expert, maybe
someone to be feared?

You may not be a novice in use of the Raspberry Pi, and may have some
programming knowledge, but this tome will just accelerate your learning.
Being a ‘Python ninja’ doesn't mean you’ve mastered every single aspect of
the language, after all, there’s always more to learn. Instead, it means you’ve
reached a point where you’re comfortable and efficient with the language,
can solve problems creatively, and write clean, effective code. You know how
to handle different challenges, think like a programmer, and confidently
create your own projects or collaborate with others.

Programs
There are a lot of programs in this book. You can download the source from
the authors website .

12 13

PYTHON UNLEASHED RASPBERRY PI NOVICE TO NINJA

which has a Quad-core 1.2 GHz CPU and 1 GB RAM, making it suitable for
more demanding Python applications, including GUI-based ones.

Raspberry Pi 3B+ (2018): Python 3 runs smoothly on this model, which
has improved performance over the Pi 3 supporting a 1.4 GHz CPU.

Raspberry Pi 4 (2019): Python 3 comes into its own on the Pi 4. This model
offers 8 GB of RAM, making it ideal for larger Python programs, and can
handle graphics with ease.

Raspberry Pi 400 (2020): Python 3 works well on the 400. This model is a
keyboard-integrated Raspberry Pi 4 with a 1.8 GHz CPU. It is effectively a 4
inside a keyboard!

Raspberry Pi 5/500 (2024) Python 3 is impressive on the 5. This model
offers up to 8 GB of RAM, making it ideal for memory intensive programs.

Raspberry Pi Zero and Zero W (2015 and 2017): Python 3 runs on the
Raspberry Pi Zero, but given the limited processing power (single-core 1
GHz CPU) and RAM (512 MB), performance may be slow.

Raspberry Pi Zero 2 W (2021): Python 3 runs on this model. It has
improved performance over the original Zero with a Quad-core CPU and
512 MB RAM, making it more capable for Python tasks.

Raspberry Pi Pico: This is a different type of device compared to the
standard Raspberry Pi models. It is a microcontroller, not a single-board
computer, so it doesn't run a full operating system like Raspberry Pi OS.
Instead, it runs programs directly on the hardware but uses a derivative of
Python called MicroPython. This is discussed in Chapter 45.

Operating Systems: All Raspberry Pi versions running Raspberry Pi OS
(formerly Raspbian and updated to Bookworm from Raspberry Pi 5), which

They are there for your convenience. andI would strongly suggest that you
type these programs in yourself. Unless you do you won’t start to
understand how a Python program goes together. How it is structured and
what goes where as well as why? Most of demo programs are not that long,
so it shouldn’t be overly difficult. As you progress through the book then
they will become much longer, so you could delve into the download at that
point.

Typing is another key skill. If you can’t type, to whatever degree, in today's
world then things become long-winded. It is the biggest skill you can master
and is starting to become part of the school curriculum here.

I’m always pleased to hear from readers, please feel free to contact me at:

feedback@brucesmith.info

Use the Website Please
If you didn’t buy this through The Coding Press website, I’d be grateful if
you consider purchasing any more of my books from there. You will find a
larger choice of book formats, and help support me directly as a creative. I
am one of a few independent publishers and certainly the only one writing
seriously about the Raspberry Pi.

This means I can fully reap the benefits of my efforts in writing and
publishing. Supporting creators directly allows us to continue producing
more great content. People often think of the cost of the final project but
not the six plus months or so it takes to go from first word to finish article!

Raspberry Pi Versions
The contents of this book have been tested on the Raspberry Pi 3, 4, 400
and 5, 500 and any future Pi releases running Python 3. There are some
differences in the application here and there, but it is remarkably consistent
across all these versions. Where differences occur, and these relate mainly to
implementation issues, then I have noted this and provided the relevant
information for each model. In general, this book should work for any
Raspberry Pi that can run Python 3. Below is a guide to how Python 3 reacts
to being run on various Raspberry Pi models.

Raspberry Pi 1 (2012): Python 3 can run on this model, but due to its
limited processing power and memory (512 MB RAM), it may not perform
well for more complex programs, such as graphics and use of high intensity
modules such as NumPy.

Raspberry Pi 2 (2015): Python 3 runs smoothly on this Raspberry Pi. It
features more processing grunt (Quad-core 900 MHz CPU) and 1 GB of
RAM, allowing for better performance with Python applications.

Raspberry Pi 3 (2016): Python 3 runs very well on the Raspberry Pi 3,

14 15

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

come pre-installed with Python 3, will support Python 3 out of the box.
Raspberry Pi OS maintains support for Python 3.x.

Python Types
Technically, there is only one Python programming language, but there are
multiple implementations of Python that cater to different needs and
environments. The most common Python implementations are:

Python: The standard implementation of Python edition and the one we are
learning herein.

CPython: The reference implementation of Python, written in the C
programming language. CPython = Python (the language) + C-based
implementation.

Jython: Python implementation written in Java. Useful when you need to
integrate Python with Java programs or Java-based frameworks.

PyPy: A Python implementation focused on speed, written in RPython (a
restricted subset of Python). PyPy is discussed in Chapter 44.

IronPython: A Python implementation targeting the .NET framework and
Mono (cross-platform implementation of .NET.)

MicroPython: A lean and efficient Python implementation designed to run
on microcontrollers and small embedded systems.

Stackless Python: A Python implementation based on CPython but with
added support for microthreads.

Brython: A Python implementation that runs entirely in the browser,
converting Python code into JavaScript.

01: Hello
Python, alongside JavaScript and Java, is one of the most widely used
programming languages in the world. Some might even say it's the most
popular and significant, especially in the business world where it's the go-to
software. If you're aiming to become a commercial programmer and haven't
yet explored Python, you might find fewer doors open—it’s that essential.

As a taster, look at these famous organisations and their uses of Python:

YouTube: the world’s largest video-sharing platform, extensively uses
Python for back-end services, including video sharing, website operation, and
system administration. Python is known for being simple and easy to
maintain, making it ideal for a platform like YouTube, which requires
handling massive amounts of data and user interactions efficiently. Its strong
libraries for web development, and support for data handling allow YouTube
engineers to scale the platform easily.

Instagram: one of the most popular social media platforms, relies heavily
on Python and its modules, for handling millions of active users and
managing its back-end services. Instagram chose Python for its simplicity and
ability to help developers write clean, maintainable code. It also helps
Instagram scale its infrastructure efficiently. Python’s scalability and speed in
development cycles allowed Instagram to keep up with its explosive growth
without compromising performance.

Spotify: the popular music streaming service uses Python for data analysis,
back-end services, and machine learning to provide personalised
recommendations. Python excels at handling large amounts of data, which
Spotify needs for features like personalised music recommendations and user
behaviour analysis. Its data science libraries for analytic and machine learning
tasks. Additionally, Python’s asynchronous framework capabilities, like
Tornado and asyncio, enable Spotify to handle multiple concurrent
connections (such as streaming requests) efficiently.

16 17

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

Reddit: is one of the largest online communities, is primarily written in
Python. It uses Python for its back-end to manage user submissions,
interactions, and content. Reddit originally started with Lisp but migrated to
Python for its simplicity and wide range of libraries. Python allows Reddit to
scale easily, handle millions of daily interactions, and manage a large amount
of content without sacrificing performance. Python's versatility and Reddit's
use of frameworks enable it to support its massive user base while remaining
flexible for future growth. Reddit's decision to use Python also makes it
easier to maintain and add new features over time.

Google: has used Python since its early days, and it plays a significant role in
various parts of Google’s infrastructure, including search algorithms, system
management tools, and back-end services. Google values Python for its
simplicity, speed of development, and readability. These attributes allow
developers to write and maintain code quicker, which is crucial in a large-
scale environment like Google. Python's flexibility also allows it to be used in
everything from system administration to machine learning. For example,
Google’s internal systems (like parts of Google Search) and tools like
YouTube Data API rely on Python. In fact, Guido van Rossum, the creator
of Python, worked at Google for several years, and Google actively supports
Python’s development.

Netflix: utilises Python for content delivery, data analytic, and automation,
playing a critical role in its recommendation algorithms and internal systems.
Netflix uses Python for data streaming and analysis to track user preferences
and optimise content recommendations. Python’s powerful libraries, such as
NumPy, Pandas, and TensorFlow. Additionally, Python helps Netflix
automate content delivery and infrastructure management, making their
systems more efficient and scalable.

NASA uses Python in various scientific computing and space research
applications, including data analysis and simulations. Python’s extensive
scientific libraries (like SciPy and NumPy) and its ease of integration with
other technologies make it ideal for complex scientific tasks. Python is widely
used in scientific research because of its readability and vast array of
scientific libraries. Python’s ease of integration with other languages (such as
C or Fortran for performance-critical code) also makes it an ideal choice for
NASA, where various specialised tools and systems need to work together
seamlessly.

Uber: uses Python for back-end services and data science tasks, helping
manage its large-scale ride-sharing operations. Python’s ease of use and
ability to handle large-scale, real-time data processing makes it a natural fit
for Uber’s, fast-paced environment. Uber processes millions of ride requests,
driver updates, and trip calculations in real-time, and Python’s capabilities
help manage these concurrent processes efficiently. Python also plays a

critical role in Uber’s data science efforts, where it’s used for calculating
estimated time of arrival (ETA), optimising routes, and pricing algorithms.

Pi Space
No wonder, then, that Python has found a cosy spot on the Raspberry Pi; it
comes bundled with your Raspberry Pi OS installation at no extra charge!

So, what makes Python so special? It's known as a high-level language, which
means it’s designed with us humans in mind—easy to read and write. High-
level languages are user-friendly and more abstract compared to low-level
languages. Programmers love them because the code is easy to understand
and maintain. Fun fact: another high-level language, C, was used to create
Python itself, which is why Python’s official name is C Python.

And no, the name has nothing to do with snakes. Python is named after a
cult 70s British comedy show, Monty Python's Flying Circus. Remember John
Cleese's ‘Ministry of Silly Walks’? Classic! (If you haven’t seen it, give it a
search on YouTube.) There are more nods to the show sprinkled throughout
the language.

At first glance, Python code might look a bit intimidating. Don’t let that fool
you. Despite its appearance, it's all about readability. Python emphasises
'structured programming,' nudging you to write clean and tidy code. It’s like
the language itself is helping you craft perfect programs. Structure is key in
every aspect of life, so why should a programming language be any different?

One of Python's biggest charms is the availability of ready-made building
blocks for writing programs, kind of like assembling a house from bricks.
Think of these bricks as the building blocks of the language. In Python
terms, they’re called libraries and modules. They do exactly what they say
on the tin—libraries of code with specific functions, and modules that
provide exactly what you need.

The best part? You don’t need to create each step from scratch. You simply
pick the blocks you need and snap them together. Python’s popularity
ensures there are plenty of these resources available, all designed to make
your coding life easier.

Python’s syntax is simple and readable, making it a breeze for beginners. The
way Python uses line indentation to define code blocks makes it easy to
spot different parts of a program at a glance. Plus, Python allows you to
execute commands and segments of code ‘on the fly’ thus allowing you see
results immediately when typing commands at the prompt. You can almost
test your code on the fly.

And let’s not forget about the massive ‘standard library’ that comes with
Python—a treasure trove of pre-written code. You don't have to worry much

18 19

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

about getting access to these tools because the standardised interface
between them makes it super easy.

The standard library itself is ever expanding, or added to in the case of
Bookworm on the Raspberry Pi 5. Modules such as NumPy that have
normally had to be installed, is now part of the library, so well worth
checking if its installed first.

This not only saves you time but also keeps your programs lightweight by
only using what you need. Python's cross-platform compatibility means
your programs can run smoothly on various operating systems like Windows,
macOS, and Linux. Write it once, use it many times.

So, as we move forward, the code we write on the Raspberry Pi will be, for
the most part, transferable to other environments. How great is that?

Python Uses
On the first page of this chapter, I outlined just some of the large multi-
nationals who make use of Python everyday, indeed you could say it
underpins a large chunk of their business functionality.

Python plays a pivotal role in the educational landscape of the Raspberry Pi,
offering versatility beyond just coding for learning. Some of the remarkable
applications of Python on the Raspberry Pi include:

Home Automation: Python is a go-to for automating and controlling smart
home devices, enabling users to script interactions with sensors, cameras,
lights, and more.

Making: With an extensive array of add-on like hats, robots, displays, and
weather monitors, Python's libraries control these attachments seamlessly.

Web Development: Python serves as a capable tool for crafting web
applications, making it ideal for web-based projects on the Raspberry Pi.

Game Development: Crafting simple games using Python and libraries like
PyGame on the Raspberry Pi provides an enjoyable introduction to
programming and game development.

IoT (Internet of Things): Python finds its niche in IoT projects,
connecting sensors, actuators, and other IoT devices to the Raspberry Pi,
facilitating communication with cloud services.

Data Science and Analytics: Many of the Python libraries support data
science, machine learning, and analytics on the Raspberry Pi, empowering
users to analyse data and run machine learning models.

Robotics: Python's prowess extends to programming robots and robotic

systems on the Raspberry Pi, with add-on modules like 'GPIO Zero'
simplifying hardware control.

Network Programming: Python's networking capabilities make it apt for
projects involving device communication over a network, such as building a
networked media centre or a file server.

Security and Penetration Testing: Python is an asset for security-related
tasks, offering tools and libraries for penetration testing and network security
on the Raspberry Pi.

Python on the Raspberry Pi is not just a programming language; it's a
gateway to a multitude of exciting possibilities across various domains. The
applications are endless.

Home Help
I personally use Python for a lot of things at home. It’s so easy to use.
Anything that involves, sorting, figures, text etc. For example, I use it for
pulling together all my account data for the end of year tax return.

For this book, I typeset it using an application called Affinity Publisher. I
created a program that extracts all the programs in the text and then test each
one of them. Any errors are logged and changes can be made. This would
otherwise be a time consuming copy and paste process.

It’s up to you to come up with the ideas…

Learning
So, how do you go about learning Python? Well if you have this book you’re
well on your way. Given that fact there are some things to help:

Set Clear Goals
Decide why you want to learn Python: Do you want to use it for web
development, data analysis, automation, or game development? Or do you
just want to learn? Knowing your end goal will help guide your learning
path.

Small Steps. For example, aim to write a small Python script within the first
week, then move to more complex projects over time.

Get the Basics Right
Understand fundamental programming concepts. It’s important, especially
for Python. Keep an open mind and ensure you understand one chapter
before jumping to the next one. Answer any questions and try a
programming example. Get though correct. Then move on. Take existing
programs and rework them for something you need.

20 21

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

Modify existing code: Try tweaking open-source code to see how things
work. It helps you understand how small changes affect the program.

Practice, Practice, Practice
Consistent coding is the key. Even 20–30 minutes a day will build your skills
faster than cramming once a week.

Stay Curious
Be open to learning new things as Python is vast and versatile. Try solving
problems. Get online and check out the Python communities and forums.
Keep in touch with the Raspberry Pi Python community.

Python 32-bit or 64-bit?
Python will run on either version of the ARM microprocessor. This is due to
something called the Python Virtual Machine, which we’ll look at later. So
you are covered either way. There are some speed advantages with using A64
especially dealing with large sets of data.

02: Python Interactive
Open the Terminal window (that’s the black box in the top left of your
screen with ‘>_’ inside it). Once you’ve got that open, type:

python3

And press the <Enter> key.

The Python Interpreter interactive command line will materialise, and include
details such as the version of Python in use. You should see a prompt that
looks like this:

>>>

This confirms that you’re in the right spot. Just to be sure you’re not mixing
it up, the standard Terminal prompt is ‘>_’. Similar, but different enough to
keep you on your toes! Note that the standard Terminal prompt will
normally include details of your log-in such as:

pi@raspberrypi:~$

or similar

Now that you’re in the Python Interactive Shell (no need to abbreviate
here), you’re ready to type in and execute Python code on the fly. Go ahead
and type:

print("G’day mate")

Then press <Enter>. The code will run immediately, and the output will
pop up on the line below. (Any guesses on what it might be?) I’m not
Australian but living down under makes "G’day mate" a common term!

22 23

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

While the Python command line is super handy for quick tests and playing
around with code, there’s an even better way to work with Python as we shall
see shortly.

To exit the interactive shell, just type:

exit()

at the >>> prompt, and hit the <Enter> key again.

You’ll be whisked back to the Command Line of the Terminal, still in the
same window.

Checking In
Some Raspberry Pi setups come with two versions of Python installed. On
my Raspberry Pi 4B, when I typed:

python --version

(Note: That’s two hyphens.)

It returned:

Python 2.7.2

However, when I typed:

python3 --version

It produced:

Python 3.7.3

Depending on your Raspberry Pi, you might see the same version for both
commands, and it is probably different from mine. Python is constantly
being updated, so you may have a newer version. Using python3 ensures that
version 3.x.x—the latest version on your Raspberry Pi—is used.

For those running the Bookworm version of the OS, you might only have
one version of Python installed. Python 3.

This book focuses on Python version 3 and above. So, if you happen to have
multiple versions installed, just remember to use Python 3, and I’ll show you
how to make sure of that shortly.

To ensure you have the latest version of Python, at the Terminal prompt
type:

sudo apt update

and press <Enter>. Let everything update, and if it asks you anything, just
reply with ‘Y’.

When the cursor returns, type:

sudo apt full-upgrade

This command updates all the software ‘packages’ on your system, making
sure they’re the latest versions available for your OS, including those all-
important Python packages. (You can check for any changes afterwards using
the ‘--version’ command.) Note that version numbers after 3.x can change
quickly.

sudo apt install python3

Would ensure that Python3 was installed.

Don’t worry if you don’t have the absolute latest version of Python. Like I
mentioned earlier, it’s horses for courses. The version you have is almost
certainly the right one for your version of the Raspberry Pi OS. Older
versions of the Pi often run older versions of Python—makes sense, right?

Equally, as you upgrade your installation as the Raspberry Pi often suggest
you do, you may well get an update on the version of Python you’re using.

IDE
An Integrated Development Environment—what we in programming
speak call an IDE—is pure bliss, like the best thing since apple pie and
custard. So, let's get set up for some coding comfort. I recommend creating a
directory in your Home folder. Maybe give it a name like 'PYTHON'. The
name doesn’t really matter, but something specific will help keep your coding
projects organised. If you’ve downloaded the program files from my website,
pop them into this folder.

Python programs are simply text files, a bunch of statements that, when
combined just right, perform tasks. We group these statements into sets, each
set handling a specific job. Bundle them together, and bingo—you’ve got a
program.

The IDE is the hero of our coding adventure. Think of it as a magical space
where you can create, run, and fix your programs, all within one window.

For this journey, our IDE of choice is ‘Thonny’, which is just perfect for
beginners. You can find it under the Raspberry menu, nestled in the
Programming drop-down menu. Once you open it, a screen like that shown
in Figure 2a greet you.

24 25

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

(Don’t worry if your screen looks a bit different. Looks and layout can vary
slightly from version to version. I’ve put the numbers there for descriptive
purposes!)

Maximise the Thonny window to fill your screen if you like, or just keep it as
a normal floating window that you can resize as needed. The choice is yours.
Thonny’s interface is all about simplicity, designed to keep things smooth and
easy as you write and run your Python code. While it might not be the top
pick for larger projects, it works perfectly for our purposes..

Let’s break down the Thonny window into three handy mini windows, each
with its own job. I’ve numbered them 1, 2, and 3 for easy reference:

1. Script Editor: This is where the magic happens. Write your Python
code here. It’s clean, it’s spacious, and it’s your coding canvas.

2. Shell: Just below the Script Editor is the Interactive Python Shell.
This is your playground for testing snippets of code on the fly, like
what we did in the command line earlier. We call this a REPL
(Read-Eval-Print Loop).

3. Assistant: On the right, this window gives you feedback about your
program when it runs. If there’s an error, it’ll offer some hints on
what might need fixing.

You can resize any of these windows individually by dragging their borders.

Across the very top of the window (Figure 2b), you’ll find the menus as
drop-downs and icons. These are laid out in a standard format, so they
should feel familiar. Most are intuitive, but a few might make you pause—no
worries, we’ll explore their purposes as we go along. If you hover your
pointer over the icons, a tool tip will pop up explaining what they do.

Figure 2a. Typical Thonny start-up screen.

Figure 2b The Thonny Menu Bar.

Now, if you glance at the bottom right-hand side of the Thonny window,
you’ll see something like this:

/usr/bin/python3

Figure 2c. Python version being used by Thonny, and its location.

This shows the version of Python that Thonny is using. The address
following the version points to the location of the system version of Python.

Now, you're all set. The interface of Thonny. is a model of clarity,
uncluttered and honed to the essential elements for Python coding. Thonny's
user-friendly design boasts simplicity to ensure smooth writing and running
of your programs. While it might not be the go-to IDE for larger, more
complex programs, those are likely beyond the scope of this book.

26 27

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

Trying It Out
In Thonny, you can either use the existing program window (‘1’ above) or
create a new one by clicking the green ‘+’ icon. You can also go to "File" in
the menu bar and select ‘New’, or simply press <Ctrl+N> (meaning press
the ‘Ctrl’ and ‘N’ keys together). There are so many ways to start—just pick
one and get going! This action will open a new tab in the code area, and you
can switch between tabs by clicking the one you need.

Type the following Python code in the editor:

print("Hello from Thonny!")

Save the file by clicking on ‘File’ and selecting ‘Save’, or by pressing
<Ctrl+S>. Choose a filename and location for your Python program, making
sure to give it a .py extension. For example, you could save it as: hello.py

You’ll see the name and directory of the file in the Thonny bar at the very
top of the window.

To run the program, click on the green ‘Run’ button in the toolbar, select
‘Run’ from the menu bar, or simply press the ‘F5’ key as a shortcut. I’ve put a
small yellow sticker on my F5 key—it makes it easy to find . Well worth
doing. But any method is fine to run a program.

Thonny will execute the Python program, and you should see the output
"Hello from Thonny!" displayed in the Shell pane at the bottom of the
Thonny window.

If you look at the program window, you’ll notice that the small tab might say
<untitled>* at the top. This indicates that the file hasn’t been saved yet. If it
had the files name would be displayed here.

In case you’re curious, Thonny draws its name from a fictional snake
character known as 'Thonny the Python'—kinda like the character on the
front cover!

When writing Python programs, you can use either uppercase or lowercase
characters, but there are some general conventions for when to use each. As
we delve deeper into Python, we’ll uncover and define these conventions.

A Real Program
Open a new code editor window by pressing the big green cross. Click in the
Code Editor window and carefully enter the following:

#Filename: start1.py
import datetime
now = datetime.datetime.now()
print(now)

If you’ve downloaded the programs then this isn’t included. You need to
type it in. Now, let’s bring this Python program to life. Hit the green 'Run'
button at the top of the window, and watch the result unfold in the 'Shell'
window. You should see the current date and time displayed down to six
decimal points of a second!

Take a peek at the Assistant window—you should find a reassuring message
confirming that your program is working perfectly, which is great considering
we just ran it successfully!

Figure 2d. Date and Time in the Shell window.

You can also run this program in the Shell window of the IDE. Follow these
steps:

1. In the Code Editor, select all three lines of the program by clicking
and pressing <Ctrl-A>. Then, press <Ctrl-C> to copy.

2. Navigate to the Shell window, click inside to select it, and press
<Ctrl-V> to paste the program there.

3. Finally, press <Enter> to run the program.

The same process applies when using the Python Interpreter in the Terminal
window. Select the Terminal window, choose 'Paste' from the ‘Edit’ menu,
and press <Enter> to execute the program.

28 29

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

In both scenarios, every line you enter in either the Thonny Shell or the
Python Interpreter in the Terminal window gets executed immediately. You’ll
see an output whenever a line involves an action that displays a result.

Things to Note: Here’ are a few things to note about the program above.

 ● The first line starts with a hash symbol, ‘#’. A Python program
ignores anything after a line that starts with a hash symbol. This
allows you to put comments or notes in your programs. As you can
see, I use this to denote the filename of the program. Thus, the
program here is called ‘start1.py’. You’ll find it listed as such in the
download programs. You can use as many comment lines as you
wish. Don't go overboard otherwise you lose the program within the
comments. And for the scope of this book, you don’t need to type
them in, if you are doing that.

 ● The program shows how we have used an imported item, by the
name of datetime. This item is called a ‘module’ and contains the
routines we needed to retrieve and print the date and time. A module
is a file that contains Python code—which you can use in your own
programs. For example, the datetime module helps you work with
dates and times."

 ● The last lines gather information required and then displays it, and
while you might now know the exact syntax of the rest of the
program means you can read it and understand what is happening.

Thonny Windows
Thonny is flexible because it has several additional windows you can open
and display. You can explore these by selecting the ‘View’ menu at the top of
the window. A good one to add is the ‘Files’ window. You can navigate to
your programs and load them with a double click, as shown in Figure 2e
below. Note how the ‘Files’ window that the Python logo signifies Python
programs.

Figure 2e. Additional Thonny windows. Files is useful to keep open.

The Raspberry Pi File System
Understanding the file system on your Raspberry Pi is essential for any
programmer. The system files are in what's known as the 'root' directory,
which is the starting point of the operating system. If you want to explore
these files on Raspberry Pi OS, just open a Desktop window and use the File
Explorer to check out the root directories.

Familiarising yourself with these system files helps you understand the
structure of your Pi and makes customisation easier. Trust me, this
knowledge will come in handy later, as we’ll see in Chapter 03.

Figure 2f. Folders in the root directory.

30 31

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

Don’t be shy about exploring these folders—just be careful not to delete or
change anything.

 ●/ (Root Directory): The root directory is the top-level directory in the
file system. Everything in the file system branches out from here.
Note in /root, it's the home directory for the root user, but you
should understand that regular users typically don't interact with it
unless using administrative privileges.

• /bin: This directory holds essential binary executables (commands)
necessary for system recovery and repair.

• /boot: Here, you’ll find the files needed for your Raspberry Pi to boot
up, including the bootloader, configuration files like ‘config.txt,’ and
the kernel.

• /dev: Contains device files that represent physical and virtual devices
like disks, serial ports, and even random number generators.

• /etc: A treasure trove of system-wide configuration files and scripts.
If you need to tweak installed software, you’ll likely find its config files
here.

• /home: This is where user home directories live. Each user on the
system has their own sub-directory under ‘/home.’

• /lib and /lib64: These directories store essential shared library files
that both the system and applications rely on.

• /media: If you plug in a USB drive or other removable media, it often
gets mounted here.

• /mnt: This is a common spot for temporarily mounting file systems.

• /opt: Here, you might find additional software packages that aren’t
part of the default installation.

• /proc: A virtual file system offering a wealth of information about
processes and system status.

• /run: This directory contains run-time data like process IDs and
socket files.

• /sbin: Home to system binaries (commands) typically used by the
system administrator.

• /srv: Intended for data served by the system, like web servers.

• /sys: Another virtual file system, exposing kernel and device
information.

• /tmp: A temporary storage area for files, often wiped clean when the
system reboots.

• /usr: This directory is packed with user-related programs, libraries,
documentation, and other files.

• /var: This is where you’ll find variable data files, like logs, spool files,
and temporary files that stick around even after a reboot.

In the /home directory, you'll find a folder with your username—your
personal space on the Pi. This is where all your folders and files live. If you
need, you can create additional users, each with their own separate
environment, allowing you to compartmentalise your Pi experience.

Head over to your /home/username directory to access all your data. Here,
you’ll come across folders like Desktop, Pictures, Documents,
Downloads, and more. This is the ideal place to organise your programming
world. Jumping back to Figure 2c you’ll remember that the Python version
we’re using is located in: usr/bin/.

Important Line Wraps
Many of the lines of Python code in the rest of these books are too long to
sit on one line. They therefore wrap into a second or more. If your type a
program in and there is an error when you run the program than look at the
error message and see if you can solve the issue for yourself. This may
simply be deleting the <Enter> you have inserted as part of the line wrap.

Figure 2g. Investigating Line Wraps

32 33

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

Questions
1. What command do you use to start the Python interactive shell from the

Terminal window? And how do you exit the Python interactive shell and
return to the regular Terminal prompt?

2. Which command should you run to check the version of Python 3 on
your Raspberry Pi?

3. Why is it important to use the command ‘python3’ instead of ‘python’
when running Python code in this book?

4. What command updates the software packages, including Python, to the
latest version on your Raspberry Pi?

5. What is displayed in the bottom-right corner of the Thonny window,
and why is it important?

6. What is the purpose of a Python module? Give an example of a module
used in the text.

03: A Matter of Style
Okay. You might find the opening section of this chapter requires some
head-scratching—especially the terminology. But give it a go, work through
the chapter, and then maybe come back here a second time to understand it
better. It may not seem like it now, but these concepts will become second
nature without you even noticing. Many people will shudder at me putting
this chapter here, and many will simply ignore it. But I just want you to know
how important it is. Feel free to skip it if you are confused, but do come
back to it when you have completed the first dozen or so chapters.

Object-Oriented Programming
OOP is a style of programming that uses, as its name suggests, "objects" to
construct programs. It allows you to model and manage the properties and
behaviour of program code as 'real-world' concepts, making them more
'lifelike.' In your mind's eye, you can start to draw comparisons. Terms such
as inheritance and encapsulation may seem complex at first, but they
become clear with understanding and practice. They mean the same as they
do in real life. You inherit something. You encapsulate something. Other
terms, such as polymorphism and abstraction, may not be as intuitive but
shouldn’t impede understanding or, more importantly, your learning of
Python programming.

What’s important are the key building blocks of OOP. In Python, there are
four fundamental concepts to grasp:

 ● Class

 ● Object

 ● Attributes

 ● Methods

34 35

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

The Block
Think of a class as a blueprint for a house. The blueprint outlines the
structure, layout, and characteristics of the house, such as the number of
bedrooms, the number of restrooms, and how many parking spaces there
are. Is there a pool? These are the attributes of the class. A class contains
attributes that define the characteristics of the object it creates.

From this blueprint, you can create multiple houses, each an instance of the
class. For example, you could use the blueprint to construct a dozen identical
houses on a street—a "block." However, not everyone wants an identical
house. Some families might modify theirs: one might forgo a pool, another
might convert the basement into an entertainment room, and so on.

To make these changes, you can adjust the attributes directly or use a
method to do so. For example, if you want to convert a room into an
entertainment room, you might create a method like convert_to_
entertainment_room() that updates the relevant attributes. This is an
example of encapsulation: bundling data (attributes) and methods (actions)
within the class, so the class manages its own state and behaviours.
Abstraction also plays a role here, as the method hides the complexity of
the conversion, exposing a simple action for the user to call.

In this analogy:

 ● A class is the blueprint of the house.

 ● Attributes are the features of the house (e.g., number of bedrooms,
presence of a pool).

 ● Methods are actions that can be performed by or on the house (e.g.,
unlocking a door, turning on the lights).

There are three methods here: unlock_door(): A method to unlock the
front door; turn_on_lights(): A method to turn on the house's lights; and
convert_to_entertainment_room(): A method to re-purpose a room.

Changing a room’s purpose is called modifying the state of the object. If
done via a method like convert_to_entertainment_room(), it showcases how
classes manage changes to their internal attributes or state.

In this case, modifying an attribute or changing the state of an object would
be a way to describe the process of adapting the class to make a room into
an entertainment room. If you are creating a specific method like `convert_
to_entertainment _room()`, it’s an example of encapsulation, where the logic
to make the change is handled within the class itself. Encapsulation refers to
bundling the data (attributes) and methods (actions) within a class, ensuring
that the object manages its own state and behaviours. Abstraction also plays

a role here because the method hides the complexity of how the room is
converted, only exposing a simple action for the user to call.

Think of a method as something the house can do or an action that can be
performed on the house. Just like living in a house involves doing certain
things, like unlocking the door, turning on the lights, or opening the garage,
methods are actions that can be performed by an object created from a class.

This house blueprint can be used to construct multiple houses with shared
features and design principles-but all based on the same plan, with
adjustments as needed. Attributes are the ingredients in this ‘House’ recipe.

Constructor and Attributes
When creating an object, its attributes are set up using a constructor, a
special method typically named __init__ in Python. The constructor
initialises the object's attributes with specific values. For example:

class House:
 def __init__(self, bedrooms, restrooms, garage,
basement, pool):
 self.bedrooms = bedrooms
 self.restrooms = restrooms
 self.garage = garage
 self.basement = basement
 self.pool = pool

This constructor initialises the object's attributes with values. A constructor
is a method.

Figure 3a. The House Base Class blueprint.

36 37

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

Encapsulation ensures that these attributes are controlled and accessed only
through specific methods, hiding the internal data from external
modification. Each instance variable (e.g., self.bedrooms) belongs to a
specific object, allowing each house (object) to have unique features.

Inheritance and Polymorphism
Inheritance allows us to extend the blueprint of a base class to create
specialised versions. For instance, we might create subclasses like
TownHouse, Bungalow, or Villa. These subclasses inherit attributes and
methods from the base House class but can also add new ones or override
existing ones. For example, a TownHouse class might inherit the bedrooms
and restrooms attributes but introduce a new number_of_floors attribute.
Inheritance allows us to reuse and extend the blueprint without rewriting
everything from scratch.

Polymorphism allows these subclasses to define methods with the same
name as those in the base class but with different behaviours. For instance, a
describe() method in the House class might provide a generic description of
a house, while the TownHouse class overrides it to include details like the
number of floors. This flexibility makes OOP wonderfully flexible, enabling
different classes to share a common interface while behaving differently.

 ● The class is the blueprint.

 ● Attributes are the features of the house.

 ● Methods are the actions the house can perform.

 ● Inheritance extends the blueprint for new types of houses.

 ● Polymorphism allows subclasses to implement shared methods in
their own way.

Class Instance
The diagram opposite (Figure 3b) builds on the previous one and aims to
provide a visual representation of how this works. We have the House Base
Class, which lists the attributes of the class inside the box. This serves as a
blueprint for all houses in a development. The base class house includes the
following attributes:

 ● Four bedrooms, two restrooms, double garage, basement and pool

Next to the base class diagram, we have a specific house that is an instance
created from this base class/blueprint. This individual house has the
following attributes:

 ● Four bedrooms, two restrooms, double garage, no basement, no
pool

This means it is based on the blueprint (the base class) but with altered
attributes, demonstrating how instances of a class can have their own unique
attribute values.

Figure 3b. Base class and an instance of a class.

As mentioned earlier, the attributes are defined using a special method called
a constructor, typically named __init__ in Python. The constructor is a
method that is automatically called when a new object of the class is created.
It allows attributes to be customised during object creation by accepting
parameters. For example:

class House:
 def __init__(self, bedrooms, restrooms, garage,
basement, pool):
 self.bedrooms = bedrooms
 self.restrooms = restrooms
 self.garage = garage
 self.basement = basement
 self.pool = pool

In this example, the constructor initialises the attributes of the house using
the values provided as arguments when the object is created. For example:

house1 = House(4, 2, “double”, False, True)
house2 = House(3, 1, "single", True, False)

Here, house1 and house2 are two different instances of the House class,
each with their own unique attributes.

These attributes are known as instance variables because they are specific
to each instance (or object) of the House class. Each object has its own set
of these variables, meaning no two objects share attribute values unless
explicitly programmed to do so. This allows for the creation of multiple

38 39

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

houses with different attributes. For example, one house might have a pool
while another does not.

Derived Classes
Using House as a base class, we can create more specific types of houses like
Townhouses, Bungalows, or Villas. These classes are derived from the
original base class. They are still houses, but they differ in structure and
behaviour while sharing some of the same attributes and methods. These
derived classes can inherit the attributes and methods of the House class
while also introducing their own unique characteristics.

For example, we might create a TownHouse class as a derived class of
House. A townhouse shares many of the same attributes as a generic house
(e.g., bedrooms, restrooms, garage) but has additional or modified
characteristics, such as driveway_parking or end_of_row. These new
attributes reflect the specific features of a townhouse that aren’t present in
the base House class.

In some cases, the derived class may override attributes or methods from the
base class to better represent its specific type. For instance, while a generic
House might have a describe() method that provides a basic description of
the house, the TownHouse class could override this method to include details
like "end-of-row" status or "shared walls."

Key Concepts
 ● Inheritance: Derived classes reuse attributes and methods from the

base class, avoiding code duplication.

 ● Overriding: Derived classes can redefine methods or attributes to
customise their behaviour.

 ● Extensibility: The base class (House) provides a foundation, while
derived classes (TownHouse, Bungalow, etc.) add or modify features
to create specific types of houses.

Methods in Derived Classes
Derived classes can override methods from the base class or define their own
unique methods. For example, a TownHouse class might override the
describe() method to exclude information about a pool (since townhouses
typically don’t have pools) and include details specific to townhouses, such as
their position in a row of houses. Here’s an example

class TownHouse(House):
 def describe(self):
 return f"This townhouse has {self.bedrooms}
bedrooms, {self.restrooms} restrooms, and is part of a
row of houses."

In this method, the placeholders ({self.bedrooms} and {self.restrooms})
are replaced with the values of the respective attributes. For instance, if self.
bedrooms is 3, the output will show "This townhouse has 3 bedrooms...".

This structure exemplifies the principles of OOP, where objects (houses)
have both data (attributes) and behaviour (methods) that model real-world
entities.

Polymorphism Example
Polymorphism allows objects of different derived classes to be treated as
instances of the base class. Even though each derived class implements its
own version of methods (like describe()), they can all be used through a
common interface. Here’s an example:

house = House(4, 2, "double", False, True)
townhouse = TownHouse(3, 2, "single")

print(house.describe())
Output: A house with 4 bedrooms, 2 restrooms, and a
double garage.

print(townhouse.describe())
Output: This townhouse has 3 bedrooms, 2 restrooms,
and is part of a row of houses.

In this example:

 ● The describe() method behaves differently depending on the type of
object calling it (a House or a TownHouse), demonstrating
polymorphism in action.

 ● Both objects can use the describe() method through the shared

40 41

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

interface of the base class, but each provides behaviour specific to its
class.

Additional Examples: Classes Galore
To further understand inheritance and method customisation, let’s consider a
Vehicle base class. This class might have attributes like make, seats, model,
colour, and year. It could also have methods like power(), refuel(), drive(),
stop(), and reverse(). A derived class called ElectricVehicle could inherit
most of these attributes and methods but replace the refuel() method with
charge() to represent how electric vehicles operate.

Another Example: Shapes
Here’s an analogy using shapes to illustrate inheritance and customisation:

 ● Base Shape: A generic shape with common characteristics, such as
length and width. It might include a method to calculate the area
(length * width).

 ● Derived Shape (Rectangle): A rectangle is a specific kind of shape.
It inherits the attributes length and width from the base shape and
calculates the area using the base method.

 ● New Shape (Circle): A circle doesn’t have length and width; it has a
radius. While it may still use the concept of area, it overrides the
method to calculate the area using the formula for a circle (π *
radius^2

Here:

 ● Inheritance: Allows new shapes (e.g., Rectangle) to reuse and extend
features of the base class (Shape) without rewriting everything.

 ● Customisation: New shapes (e.g., Circle) can override or define
their own methods while remaining conceptually related to the base
class.

 ● Polymorphism: Objects of different derived classes (Rectangle,
Circle) can be treated uniformly as instances of the base class
(Shape), but each implements its own specific behaviour.

Programming with OOP
Here’s how you might typically construct a program to represent the OOP
concepts we’ve discussed. These code snippets might not make sense
immediately, but take your time to examine each one closely—you’ll see how
they fit together. The terminology used is intentionally simple and clear.

Example 1: The House Class

class House:
 def __init__(self, bedrooms, bathrooms, has_pool):
 self.bedrooms = bedrooms # Attribute
 self.bathrooms = bathrooms # Attribute
 self.has_pool = has_pool # Attribute

 def unlock_door(self): # Method
 print("The door is unlocked.")

 def turn_on_lights(self): # Method
 print("The lights are turned on.")

 def fill_pool(self): # Method
 if self.has_pool:
 print("The pool is being filled.")
 else:
 print("This house doesn't have a pool.")

In this example:

Attributes like bedrooms, bathrooms, and has_pool describe the house’s
characteristics.

Methods like unlock_door(), turn_on_lights(), and fill_pool() describe
actions that can be performed by or on the house.

Example 2: Converting a Room to an Entertainment Room
We can add functionality to convert a room into an entertainment room:

class House:
 def __init__(self, bedrooms, bathrooms, has_pool,
rooms):
 self.bedrooms = bedrooms
 self.bathrooms = bathrooms
 self.has_pool = has_pool
 self.rooms = rooms

 def convert_to_entertainment_room(self, room):
 if room in self.rooms:
 self.rooms[self.rooms.index(room)] =
'entertainment room'
 print(f"The {room} has been converted into
an entertainment room.")
 else:
 print(f"There is no {room} to convert.")

Here, he convert_to_entertainment_room() method modifies the rooms list.
It checks if the specified room exists and, if so, updates it to "entertainment
room."

Example 3: Adding a Garage
class House:
 def __init__(self, bedrooms, bathrooms, garage_
size, has_garage):
 self.bedrooms = bedrooms
 self.bathrooms = bathrooms

42

PYTHON UNLEASHED RASPBERRY PI

 self.garage_size = garage_size
Number of cars the garage can hold

 self.has_garage = has_garage
Boolean to indicate if house has a garage

 def open_garage(self):
 if self.has_garage:
 print(f"The garage door is opening... This
garage can fit {self.garage_size} cars.")
 else:
 print("This house does not have a garage.")

You can create an instance of the House class and call its methods:

my_house = House(bedrooms=3, bathrooms=2, garage_
size=2, has_garage=True)
my_house.open_garage()

Output:

The garage door is opening... This garage can fit 2
cars.

You can expand this by adding more methods, such as:

def close_garage(self):
 if self.has_garage:
 print("The garage door is closing...")
 else:
 print("This house does not have a garage.")

Combining Snippets into a Full Program
You may feel that this chapter is way to advanced to be at the front of the
book. It probably is. But OOP is essential to life on Python. Some of what
you have read will stick, and as I’ve said, and promise, these concepts will go
almost unnoticed by you and everything will fall into place as you continue
on. Re-read this chapter every few chapters of the book. More will stick.

These snippets of code can be combined to create a comprehensive
program. While we won’t combine them here, I encourage you to experiment
and build on these examples as you progress through the book. Keep
tripping back here until you can create the completed program. Then you’ll
fully understand OOP! I promise it will happen.

INDEX
__add__ 444, 448, 451
__call__ 449, 450
__dict__ 326
__doc__ 469
__eq__ 449, 451
__getitem__ 449, 450
__init__ 37, 38, 42, 43, 67, 114, 136, 146,
288, 353, 368, 369, 377, 378, 379, 392, 444,
445, 446, 448, 449, 450, 451, 468, 478
__iter__ 450
__le__ 449
__len__ 450
__lt__ 449
__main__ 202, 224, 237, 260, 285, 286, 287,
325, 347, 348, 369, 381, 382, 447, 458, 467,
471, 473
__name__ 202, 224, 237, 260, 285, 286,
287, 325, 347, 348, 369, 381, 382, 447, 458,
467, 471, 473
__new__ 353
__repr__ 288, 444, 445, 446, 447, 448, 450
__setitem__ 449, 450
__str__ 444, 445, 446, 447, 450, 451
__version__ 392
_build 479
_distutils_hack 392
_files 237
_static 479
_templates 479

A
abc 288, 350, 351, 352, 354, 355, 356,
357
abcs 352, 353, 356
abs 268, 390
absolute 25, 268, 425
abspath 479
abstract 19, 288, 304, 350, 351, 352, 356, 357
abstractclassmethod 350, 352
abstraction 35, 36, 447
abstractmethod 288, 350, 351, 352, 355
abstractproperty 350, 352
abstracts 54, 464

acronym 291
act 37, 57, 370, 452
activate 168, 169, 173, 228, 233, 326, 330,
331, 341, 343, 344, 456, 481
actuators 20
add 18, 20, 21, 30, 36, 38, 40, 48,
add_feature 441
add_numbers 49, 56, 75, 314, 315, 317
add_subplot 440
addhandler 259
72, 376, 381, 383, 400, 431, 448, 472
addition 14, 49, 100, 101, 114, 116, 126,
151, 195, 221, 262, 266, 267, 305, 306, 307,
308, 320, 354, 360, 393, 399, 410, 448, 451,
477
additions 116, 336
address 27, 58, 60, 156, 251, 260, 336, 420,
448, 471, 472, 473
adds 49, 56, 75, 100, 109, 149, 163, 195,
198, 234, 266, 284, 285, 366, 373, 393, 399,
400, 406, 418, 431, 442
admin 228, 470
administrator 32
ads 328
algebra 49, 64, 304, 392, 431, 432
algorithm 151, 351, 355
algorithms 18, 19, 151, 274
align 370, 473
alpha 408, 437
alphanumeric 243, 248
analogous 47
analogue 270
analogy 36, 44, 45, 52, 53, 57, 145, 278
analytics 17, 18, 20
anchors 244, 245
api 18, 223, 224, 239, 452, 453, 454,
455, 456, 457, 458, 459, 460, 461, 464, 465,
477
api_key 224, 454, 457, 459
api_keys 223, 224
api_weather 457
apt 21, 24, 25, 121, 170, 171, 172, 173,
175, 313, 328, 335, 392, 456, 474, 477
architecture 407, 462, 463
archive 200, 201, 202
archived 201, 312
archives 201
archiving 201
arg 178, 347
args 76, 285, 286, 326
argument 46, 47, 66, 86, 130, 138, 178, 222,
281, 282, 283, 284, 286, 288, 296, 297, 315,
326, 361, 388, 414, 417, 421, 422, 433
arguments 45, 46, 75, 76, 77, 211, 277,
281, 282, 284, 285, 287, 293, 346, 347, 349,
466
argv 339, 346, 347, 349
array 18, 20, 48, 109, 223, 305, 308, 393,
394, 395, 396, 397, 398, 399, 400, 401, 402,
403, 404, 405, 406, 408, 409, 410, 413, 426,
428, 429, 430, 431, 432, 443
array1 398, 399, 400
ascii 407
asctime 259
aspect_ratio 390

PYTHON UNLEASHED RASPBERRY PI INDEX

124, 125, 130, 133, 135, 172, 278, 305, 328,
397
collections 91, 93, 94, 117, 124, 128,
129, 132, 137, 140, 149, 150, 152, 153
cols 403, 404
4, 425, 426, 427, 429, 430, 432, 433
column_means 429
column_sum 403, 404
combine 56, 70, 71, 72, 92, 103, 111, 140,
356, 359, 370, 470
combined 25, 43, 47, 356, 358, 451, 462
combined_list 103
combines 143, 312, 359
combining 70, 71, 120, 133, 273, 278,
447
combo 366, 367
combobox 367
command_output 237
compare 73, 98, 123, 125, 128, 151, 268,
361, 391, 409, 447, 451
compartmentalise 33
compile 243, 323, 327, 341, 342, 343
compiled 53, 56, 171
compiler 52, 53, 322, 342
compiles 54, 243, 342
complex128 407, 408
complex256 407
complex64 407
complex_array 408
complexities 54
compressed_value 275, 276
compute 263, 276, 395, 396, 405, 427
con 289
concat_list 104
concatenate 68, 71, 72, 112, 114, 133, 71,
72, 104
concatenating 112, 230
concatenation 68, 70, 71, 72, 104
concurrent 18, 19
concurrently 148
condition 81, 83, 85, 90, 91, 184, 255, 270,
288
conditional 101, 107, 184, 188, 271
conditionally 101
conditions 83, 85, 91, 101, 270, 271,
273, 459, 460
conf 478, 479, 480, 481
config 32, 223, 224, 225, 363, 364, 366, 479
config_file 224
conformance 316
conjunction 209
container 47, 48, 49, 94, 136, 278
containers 45, 63, 370, 449
contextlib 288
contextmanager 288
contexts 264, 447
contextual 151
contiguous 305
convert 36, 42, 79, 106, 122, 124, 128, 130,
131, 138, 152, 188, 191, 192, 219, 220, 221,
222, 223, 262, 360, 369, 387, 391, 396, 409,
419, 430, 435, 436, 437, 438, 439, 477
convert_ 36
convert_to_ 37
convert_to_enteratainmentroom 42

convert_to_entertainmentroom 43
converted 36, 42, 54, 79, 138, 188, 193, 222,
396, 409, 415
converted_array 409
converter 221
converting 16, 53, 122, 123, 125, 130,
131, 132, 138, 396, 415, 419, 420, 426, 430
copytree 200, 201, 202
cos 269, 270, 369
cos_value 269
cost 50, 53, 64, 91
country 109, 110, 111, 112, 119, 212, 372,
373, 457, 458, 459
country_code 454, 457, 458, 459
country_data 212
country_info 212
counts 106, 121, 135, 426
cpu 15, 16, 462
cpython 16
create_line 368, 369
creator 18, 310
creators 14
crop 386, 387, 391
cropped_image 387
csv 213, 214, 215, 216, 217, 218, 219,
221, 222, 223, 225, 226, 413, 414, 416, 417,
418, 419
csv_dict_reader 215
csv_file 221, 222
csv_file_ 218
csv_file_path 215, 218, 416, 418
csv_reader 214, 218, 221
csv_to_json 221, 222
csvfile 214, 215, 218
ctrl 27, 28, 29, 474
cube 304
current_datetime 359, 364, 365, 366
current_dict 237
current_path 205, 233
currently 50, 182, 232, 325, 334, 337, 342,
343, 373
custom 59, 87, 88, 139, 191, 212, 232, 233,
255, 274, 288, 325, 338, 340, 342, 347, 348,
353, 374, 384, 387, 388, 389, 447, 448, 449,
450, 463, 468, 471, 473, 477
custom_bin 233
custom_module 348
custom_path 347
cwd 238
cx 369
cy 369
cyber 135
cycles 17

D
dashboard 453, 470
dashboards 434
data_dict 415, 416, 418
data_from_dict 416, 417
data_from_lists 416
data_lists 414, 415, 417
database 94, 130, 203, 223, 224, 225, 239,
259, 260, 360, 470
databases 221, 412

assembler 482
assembly 208
assets 384
astype 409, 419, 420
asynchronous 17
asyncio 17
attribute 36, 42, 43, 44, 114, 126, 136, 207,
287, 326, 346, 409, 450, 469, 476
attributeerror 126
auto 384, 479
autodoc 479, 480
autopep8 312, 313, 316, 319
autoremove 173
average 123, 215, 216, 217, 226, 414, 416,
419, 420, 421, 440, 456
axes 395, 396, 405, 435, 441
axes3d 440
axis 395, 396, 403, 404, 406, 410, 424,
429, 433, 438, 440, 441
axs 443

B
backup 76, 201, 335, 461
bar3d 440, 441
bare 199, 255, 258, 323
base_url 457
bash 51, 167, 322
bashrc 335, 336
bcm 465
bcm2711 462
bdfl 310
bicubic 387
bin 27, 32, 33, 58, 62, 169, 173, 227,
228, 229, 275, 327, 330, 331, 334, 341, 343,
440, 441, 456, 479
binaries 32, 228
binary 32, 261, 274, 275
bit 19, 26, 28, 50, 52, 53, 58, 82, 92, 95,
104, 134, 181, 190, 205, 235, 262, 265, 273,
274, 275, 276, 327, 333, 334, 338, 366, 370,
380, 392, 406, 407, 457, 477, 482
bits 57, 273, 274, 275, 276, 322
black 23, 312, 313, 317, 318, 319, 375,
376, 377, 378, 380, 383
blur 387
blurred_image 387
blurring 386
bmp 386
bmw 113
bookworm 16, 24, 170
bool_ 407, 408
bool_array 408
boolean 43, 69, 129, 223, 270, 272, 273, 274,
407, 408
booleans 129, 219, 220
boxplot 427, 438
boxplots 427
bpython 248
branches 32
branching 281
broadcom 462
broader 67, 203, 311, 312
brython 16

bubble 57
button_frame 371, 372, 373
byte 78, 79, 410
bytecode 52, 53, 54
bytes 78, 118, 207, 208, 408, 409, 410
bytes_ 408
bytes_array 408

C
calculate_ 286
calculate_area 476
calculate_sum 77, 286, 287, 297, 347
calculated 294, 295, 391, 395, 399, 430
calculated_result 295, 296
calculates 56, 70, 107, 226, 286, 287, 296,
297, 347, 396, 405, 420, 476
calculus 261, 264
call 25, 26, 36, 43, 44, 46, 47, 49, 59, 66,
67, 75, 115, 145, 197, 203, 218, 222, 280,
285, 286, 289, 290, 297, 325, 327, 357, 359,
374, 382, 455, 471
cat 246, 247
catalog 355, 356
catalogue 235
cdvirtualenv 337
ceil 265, 268, 269, 276
celsius 79, 457, 459
celsius_to_fahrenheit 79
cfg 62
chaos 190
char 120
char_count 120
chdir 238
chmod 206, 207, 209
chunk 20, 102, 156, 210
chunk_size 210
chunks 95, 210
class 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
47, 49, 55, 56, 67, 77, 114, 136, 146, 148,
149, 150, 152, 255, 256, 278, 287, 288, 322,
350, 351, 352, 353, 354, 355, 356, 357, 358,
359, 361, 368, 377, 378, 379, 384, 444, 445,
446, 447, 448, 449, 450, 451, 476, 478
class_ 353
class_dict 353
classify 391
classmethod 288
clock 270, 364, 365, 366, 375, 377, 378,
379, 383
close 60, 129, 197, 203, 209, 211, 228,
363, 382, 384, 473, 474
close_garage 43
closed 51, 179, 203, 211
cloud 20, 187, 334
cls 287, 288, 353
cmap 439
cmd_build 343
cmd_compile 343
cmd_execute 342, 343
cmyk 387
col 398, 422
collaborate 13
collection 48, 78, 87, 115, 120, 121, 123,

PYTHON UNLEASHED RASPBERRY PI INDEX

E
echo 227, 231, 233, 336
ecosystem 328
edge_enhance 387
editor 2, 26, 27, 28, 29, 214, 294, 318, 321,
322, 328, 335, 342
editors 5
element_at_index_1 150
element_diff 307
element_sum 307
elif 79, 85, 192, 361
else 42, 43, 58, 59, 79, 82, 85, 102, 162,
183, 184, 186, 187, 189, 191, 192, 199, 200,
204, 208, 224, 230, 242, 245, 246, 247, 252,
253, 254, 258, 267, 273, 286, 289, 314, 317,
320, 322, 325, 331, 332, 348, 361, 370, 390,
467, 468, 469
email 189, 248, 251, 252
email_dict 252
email_list 252
empty_directory 238, 239
encapsulate 35, 280, 287, 447
encapsulated 67
encapsulates 45, 67
encapsulating 67, 169
encapsulation 35, 36, 37, 44, 47, 55, 67,
114, 283
encode 79, 219, 220
encoding 214, 215, 218, 220, 237, 238
encryption 274
end_time 286
ended 149, 150
enqueue 148, 149, 152, 153
ensure 2, 22, 24, 25, 27, 91, 117, 121, 122,
123, 133, 134, 152, 153, 164, 168, 170, 172,
173, 175, 192, 200, 202, 203, 212, 229, 234,
251, 259, 260, 281, 297, 308, 311, 318, 323,
335, 336, 352, 354, 356, 361, 383, 384, 391,
392, 416, 421, 423, 435, 441, 453, 471, 479,
481
enumerate 84, 87, 88, 92, 138, 139, 140
enumerated 88
env_name 336, 337
env_vars 238, 239
enviro 330, 332, 334, 336, 338, 340, 342,
344
environ 233, 238, 239, 333
environment 18, 19, 25, 33, 52, 57, 58, 59,
60, 61, 62, 167, 168, 169, 170, 171, 173, 175,
227, 228, 229, 231, 232, 233, 234, 235, 238,
239, 282, 313, 314, 318, 320, 322, 324, 326,
327, 330, 331, 332, 333, 334, 335, 336, 337,
338, 339, 341, 343, 344, 374, 386, 392, 393,
439, 456, 461, 463, 464, 471, 477, 478, 479,
481
environmental 333
epoch 208
epub 477
eq__ 288, 449
equal 83, 184, 263, 264, 309, 437, 438,
449, 451, 467
equality 263, 449
error 26, 65, 79, 126, 127, 153, 159, 177,

178, 179, 180, 181, 183, 184, 185, 186, 188,
191, 201, 202, 203, 204, 205, 212, 214, 215,
218, 224, 226, 227, 237, 238, 253, 254, 255,
257, 258, 259, 260, 279, 280, 281, 289, 312,
314, 315, 323, 347, 348, 384, 398, 457, 458
error_ 260
error_logger 259, 260
errors 21, 52, 79, 91, 119, 120, 134, 170,
177, 178, 180, 181, 185, 188, 192, 199, 202,
203, 204, 212, 216, 225, 231, 239, 253, 254,
256, 257, 258, 259, 260, 278, 293, 294, 310,
312, 314, 315, 316, 322, 323, 348, 356, 453,
459
ethernet 462
eval 26, 446
evaluate 270, 271, 272
evaluates 50, 66, 281, 312
evolve 304
exact 30, 57, 75, 135, 145, 179, 217, 331,
376, 395, 463
exception 188, 201, 202, 203, 204, 214, 215,
218, 253, 254, 255, 256, 257, 258, 259, 348
exception1 254
exceptions 204, 253, 254, 255, 256, 257,
258, 259, 280, 322, 457, 476
exceptiontype 255
exclude 200
excludes 86, 256
exe 52
executable 32, 53, 54, 59, 60, 61, 169,
228, 232
executables 227, 228
execute 19, 23, 28, 29, 53, 85, 148, 158, 182,
204, 206, 207, 208, 237, 238, 239, 240, 285,
286, 290, 296, 322, 323, 324, 327, 337, 339,
341, 342, 343
execute_command 237
executed 30, 54, 81, 168, 228, 253, 325, 353
executes 46, 52, 54, 324, 343
executing 54, 78, 85, 174, 206, 232, 237, 238,
279, 282, 283, 314, 323
exist 36, 112, 119, 120, 126, 127, 128,
196, 198, 199, 203, 204, 212, 216, 230, 236,
237
exist_ok 200, 202
existence 112, 199, 212
exit 24, 33, 51, 91, 92, 182, 190, 192,
224, 347, 348, 349, 380, 381, 382
exits 83, 92, 347, 382
exp 264
expand 322, 368, 370, 376, 463
expanded 399, 400
exponent 76
exponential 264
export 213, 228, 336
ext 480
extend 38, 71, 98, 121, 247, 260, 277, 283,
327, 350, 351, 354, 442, 452
extract_to 201, 202
extract_valid_emails 251, 252
extrapolate 235

F
factor 283, 449

dataclass 288
dataframe 413, 414, 415, 416, 417, 418, 419,
420, 421, 422, 423, 424, 425, 426, 427, 428,
429, 430, 431, 432, 435, 436, 437, 438, 439,
443
dataframes 412, 414, 416, 417, 418, 419,
428, 430, 431
dataset 117, 196, 216, 217, 419, 420, 428,
431, 437, 443
datasets 18, 91, 123, 124, 125, 126, 216, 217,
277, 290, 409, 425, 429, 431, 439, 442
date 29, 30, 49, 125, 169, 171, 205, 206,
245, 322, 358, 359, 360, 361, 364, 365, 366,
456, 459, 460, 471
date_string 358
dates 30, 48, 137, 140, 358, 359, 360, 361
datetime 28, 30, 48, 49, 205, 358, 359, 360,
361, 364, 365, 408, 456, 457
datetime64 408
datetime_array 408
datetime_object 359
dateutil 331
db_host 224
db_name 223
deactivate 168, 229, 234, 330, 337
deactivates 337
debug 181, 182, 183, 184, 186, 224, 225,
259, 325, 326, 375, 447, 461
debug_mode 119, 223, 224, 225
debugged 326
debugger 181, 183, 185, 324, 325, 326
debuggers 181
debugging 21, 53, 181, 182, 183, 184,
185, 255, 257, 258, 260, 284, 288, 310, 322,
323, 324, 325, 326, 346, 349, 434, 445, 446,
447, 455
dec 266
decode 79, 219, 220
decoding 220
decompress 201, 275, 276
decompressed 275
decompressed_num1 275, 276
decorator 284, 285, 286, 287, 288, 296, 297,
351, 352, 354
decorator_name 284, 351, 354
decorators 277, 283, 284, 285, 287, 288,
350, 354, 355, 357
deep_copy 119, 158, 159, 161, 163, 164
deepcopy 119, 157, 158, 159, 161, 163, 165
deg 454
degree 14, 316
del 65, 104, 105, 110, 111, 117
delay 43, 457, 458, 459, 460
delays 384
delimiter 68, 69, 213, 214, 218
delimiters 213
delitem__ 450
deliver 355
deque 148, 149, 150, 151, 152, 153
deque_length 150, 151
deques 149, 151, 152
dequeue 148, 149, 152, 153
derivative 16
destination 200, 202, 239

destination_dir 201, 202
destination_file 200
destination_folder 200
deviation 425, 426
df 419, 420, 422, 423, 424, 425, 426,
427, 428, 429, 430, 436, 437, 438, 439
df2 424
df_dropped 424
df_dropped_na 424
df_filled 424
df_from_csv 416, 418
df_from_dict 416, 417, 418
df_from_lists 414, 416, 417, 418
df_missing 424
df_pivot 424
df_sorted 424
df_stacked 424
df_unstacked 424
dht22 225
dict 120, 131, 132, 142, 293, 353
dictwriter 213
dimensional 89, 305, 395, 397, 413, 431,
432
directory_list 236
directory_path 201, 236, 237
directory_structure 236, 237
directory_to_zip 202
display_current_datetime 359
display_menu 192
display_person_details 447
display_weather_history 458
distract 293
distributed 440, 441
divide 97, 241, 254, 256, 257, 394
division 183, 254, 257, 259, 262, 267, 305,
394, 410
division_result 262
docs 479, 480
docstring 288, 315, 469, 476, 480
docstrings 311, 315, 469, 476, 477, 478, 480
doctest 478
doctype 472
domain 251, 252
domains 21, 453
dpkg 168
dr 14
draw 35, 314, 368, 377, 380, 386, 387,
388, 389
draw_labels 442
drawing 161, 369, 378, 383, 387, 389
drop 25, 26, 59, 60, 61, 62, 66, 169, 343,
362, 366, 367, 421, 424, 426
drop_ 419
drop_duplicates 420
dropdown 367, 368, 372, 373
dropdown_label 367
dtype 403, 404, 405, 408, 409, 413
dtypes 406
dunder 444, 446, 447, 448, 449, 450
dunder1 444
duplicate 117, 118, 123, 124, 125, 132, 135,
155, 162, 200, 402, 419, 420, 421
dx 440
dy 440

PYTHON UNLEASHED RASPBERRY PI INDEX

fundamental 22, 35, 44, 113, 115, 145,
199, 207, 264, 266, 278, 281, 421

G
gained 304, 334
game 20, 22, 192, 228, 352, 374, 375, 376,
377, 378, 379, 380, 381, 383, 384, 386
gameplay 384
gatekeeper 273
gateway 21
geany 169, 316, 320, 321, 322, 323, 324,
325, 326, 327, 328, 334, 335, 337, 338, 339,
340, 341, 342, 343, 466
generate 90, 110, 283, 333, 410, 417, 425,
430, 433, 440, 441, 453, 456, 461, 477, 478,
480
generate_squares 290
generated 54, 340, 380, 453, 480
geodetic 442
geographic 442
get_choice 192
get_coordinates 136
get_name_and_age 135
get_pos 377, 379
get_rect 377, 379
get_value 478
get_weather_data 457, 458, 459
getattr 468, 469
getcwd 50, 205, 238
getlogger 259
getmtime 240
gets 21, 30, 32, 51, 53, 54, 66, 68, 69, 77,
98, 104, 146, 171, 187, 188, 200, 227, 233,
253, 297, 337, 376, 467, 472
getsize 240
getsizeof 118, 346, 349
ghz 15, 16
github 312
global 64, 78, 174, 228, 229, 234, 278, 279,
280, 281, 283, 291, 292, 293, 294, 295, 296,
342, 343, 463
global_value 295, 296
global_variable 280, 281
google 18, 224, 264, 376, 389, 461
google_maps 223, 224
gpio 21, 462, 463, 464, 465, 470
gpiod 463
gpiozero 464, 465
gpu 462
graphic 2
graphics 15, 54, 304, 362, 364, 366, 368,
370, 372, 382, 386, 387, 439, 462
graphs 288, 434
grasp 35, 95, 120
grayscale 387
grayscale_image 387
grep 168
group 25, 118, 133, 207, 208, 242, 245,
246, 247, 249, 250, 252, 311, 332, 338, 370,
377, 379, 383, 427, 447
gui 15, 362, 368, 370, 371, 373, 384
guido 18, 310, 311
guis 368, 370, 434

H
hardware 16, 21, 53, 54, 57, 274, 462, 463,
464, 465, 470
hash 30, 46, 109, 114, 115, 121, 123, 157,
274
hashable 132, 136
hashed 157
hashing 274
hat 179, 357, 463, 464
heap 156
heatmap 439
heterogeneous 94, 412, 413, 429
hierarchical 288, 431
hierarchy 256, 352
high 13, 15, 19, 213, 289, 355, 461, 464,
465
histogram 437, 440, 441, 443
histogram2d 440, 441
homogeneous 121, 412, 413, 431, 432
host 223, 224, 225, 471, 473
hr 118, 420
html 471, 472, 473, 477, 480, 481
http 454, 457, 459, 472
https 248, 456
hub 452, 462
hyperbolic 264

I
iana 360
ice 414, 416
icon 27, 28, 59, 454
icons 26, 27, 182
id 156, 207, 293, 417, 418, 454
identifier 132, 156, 207, 278
ides 52, 294, 316, 320
idle 320
ignore 316, 455
ignorecase 243
iloc 423, 425, 426
imag 262
image 320, 321, 377, 378, 379, 384, 386,
387, 388, 389, 390, 391, 440, 480
imagedraw 387, 388, 389
imageenhance 387
imagefilter 387
imagefont 387, 388, 389
images 374, 384, 386, 387, 391
imaginary_part 262, 263
immutability 101, 107, 130, 133, 137, 138
immutable 78, 87, 94, 123, 124, 126,
128, 129, 132, 134, 135, 136, 137, 139, 140,
156, 162
immutable_set 126
implementation 15, 16, 147, 148, 152,
312
implied 2, 58
implies 152, 396
importerror 232, 348
inaccessible 203, 280
inaccuracies 391
include 20, 23, 40, 62, 64, 66, 68, 81, 94,
107, 123, 129, 134, 135, 139, 181, 182, 189,

factorial 184, 185, 186, 286, 287, 289
factorials 184, 288
fail 239
failed 224, 226, 457
false 40, 69, 83, 85, 91, 98, 112, 183, 186,
224, 268, 270, 271, 272, 273, 368, 377, 379,
404, 407, 408, 417, 418, 438, 449, 466, 467
familiar 26, 91, 155, 197
ffill 419
fg 365, 366, 367
fib 59, 188
fibonacci 288
field 13, 338, 341, 370, 371, 373, 412, 454
fieldnames 215
fields 261, 304, 362, 373, 454, 455
fifo 145, 148, 149, 150, 153
file_handler 259
file_info 207, 208, 209
file_list 236
file_path 205, 214, 215, 218, 381, 382
file_stat 205
file_to_change 206, 209
file_to_check 199
filed 338
filehandler 259
filemode 208, 209
filenotfounderror 196, 203, 204, 214, 215,
218, 224, 236, 237
filername 225
files 25, 28, 30, 31, 32, 33, 50, 51, 52, 62,
78, 96, 169, 171, 172, 195, 196, 197, 198,
199, 200, 201, 203, 204, 205, 206, 210, 211,
212, 213, 219, 220, 221, 223, 226, 228, 230,
231, 232, 235, 236, 238, 239, 240, 253, 260,
278, 288, 291, 313, 322, 324, 333, 335, 338,
340, 341, 342, 343, 381, 384, 389, 417, 418,
419, 463, 477, 478, 479, 480
filesystem 229
fillvalue 100, 143
filter 101, 123, 282, 387, 469
filtered 107
find 14, 17, 21, 25, 26, 28, 29, 30, 32, 33,
35, 48, 57, 58, 62, 69, 70, 93, 100, 101, 103,
104, 105, 106, 110, 112, 123, 124, 125, 128,
133, 169, 185, 190, 213, 227, 231, 232, 233,
234, 241, 242, 245, 246, 247, 250, 263, 276,
278, 292, 304, 310, 313, 315, 328, 348, 376,
381, 383, 386, 391, 406, 410, 464, 471, 477,
479
findall 241, 242, 244, 248, 251, 252
finding 105, 125, 126, 183, 241, 289, 466
flac 381
flag 273, 316
flags 205, 243, 273, 274, 342
flake8 294, 312, 313
flask 386, 456, 470, 471, 472, 473, 474
flask_app 474
flip 72, 73, 74, 97, 135, 270, 377, 378,
380, 381, 382, 383, 386, 387, 389
flip_left_right 387
flip_top_bottom 387
float 63, 78, 87, 129, 188, 191, 193, 262,
347, 409, 419, 476
float128 407

float16 407
float32 407
float64 407, 408, 409
float_array 408
font 364, 365, 366, 367, 368, 375, 376,
377, 378, 380, 387, 388, 389, 472
font_size 119, 375, 376, 377, 378
fonts 375, 377, 378, 384, 387, 389
fontsize 436, 437, 438, 439, 442
form 2, 54, 65, 67, 68, 134, 310, 317, 322,
412, 464
format 26, 53, 66, 78, 114, 196, 201, 208,
209, 219, 220, 221, 222, 223, 240, 251, 254,
312, 313, 316, 317, 326, 342, 358, 359, 360,
361, 364, 365, 376, 381, 382, 386, 387, 393,
415, 417, 419, 429, 453, 454, 455, 460, 477
format_permissions 205
formats 14, 201, 213, 221, 251, 358, 359,
365, 386, 418, 434, 460, 477
formatted_datetime 359
formatter 259, 312, 313, 317
forth 318, 430
fortran 18
found 19, 78, 106, 120, 133, 196, 204, 214,
215, 218, 224, 227, 242, 244, 245, 246, 247,
291, 292, 388, 389
frame 371, 372, 373, 380, 383
frames 370, 371, 372, 373, 378, 383, 439
framework 16, 17, 353, 374, 470
frameworks 16, 18, 354, 386, 470, 471
fromtimestamp 205
front_element 152
frozenset 123, 124, 126
fruit 57, 82, 84, 87, 88, 272
func 284, 285, 286, 287, 296, 354
func_obj 469
function 37, 41, 45, 46, 47, 49, 56, 64, 65,
66, 67, 75, 76, 77, 78, 79, 81, 84, 86, 87, 88,
92, 94, 96, 100, 103, 106, 114, 115, 122, 130,
131, 133, 135, 138, 139, 140, 141, 144, 147,
153, 157, 164, 165, 178, 181, 182, 184, 187,
188, 190, 191, 192, 198, 200, 201, 207, 209,
210, 211, 218, 220, 222, 224, 241, 242, 243,
244, 245, 251, 260, 264, 265, 276, 277, 278,
279, 280, 281, 282, 283, 284, 285, 286, 287,
288, 289, 290, 291, 292, 293, 294, 295, 296,
297, 315, 321, 322, 325, 326, 348, 349, 351,
354, 359, 364, 365, 366, 367, 368, 380, 382,
386, 387, 389, 394, 397, 398, 401, 417, 440,
446, 447, 449, 457, 458, 459, 460, 466, 467,
468, 469, 470, 476, 478
function_name 45
functional 101, 172, 380, 445
functions 19, 30, 45, 46, 47, 48, 56, 64, 75,
79, 90, 91, 92, 112, 113, 131, 132, 134, 137,
138, 140, 144, 181, 182, 206, 208, 211, 213,
219, 220, 238, 241, 242, 243, 261, 262, 264,
265, 266, 269, 270, 274, 276, 277, 278, 279,
280, 281, 282, 283, 284, 285, 286, 287, 289,
290, 291, 293, 294, 295, 297, 308, 315, 322,
346, 350, 351, 354, 358, 359, 364, 383, 384,
388, 395, 396, 400, 431, 444, 448, 449, 460,
462, 463, 466, 467, 468, 469, 477, 480
functools 288

PYTHON UNLEASHED RASPBERRY PI INDEX

112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 123, 126, 128, 130, 131, 132, 135, 136,
137, 139, 148, 150, 151, 157, 161, 175, 181,
189, 190, 193, 195, 213, 215, 216, 217, 219,
223, 224, 226, 239, 242, 259, 272, 282, 287,
296, 304, 323, 333, 342, 346, 358, 362, 402,
404, 412, 416, 418, 419, 420, 423, 430, 432,
434, 453, 455, 456, 457, 458, 459, 460, 461,
471, 477
keyboardinterrupt 256
keyerror 127, 226
kwargs 76, 285, 286

L
lambda 120, 277, 281, 282, 296
lanczos 387
large_file 210
large_int_array 409
large_list 118
last_element 150
last_modified 205
latitude 441, 442
latitudes 442
latter 316
led 465
leds 464, 465
legb 291
len 100, 103, 112, 133, 147, 150, 280,
307, 309, 347, 450
less 82, 83, 145, 184, 231, 263, 271, 284,
290, 314, 317, 334, 429, 434, 449, 464, 467
lgpio 464
lib 32, 62
lib64 32
libgpiod 463
libraries 17, 18, 19, 20, 21, 33, 48, 50, 57, 58,
62, 173, 174, 209, 221, 223, 228, 229, 261,
293, 310, 311, 332, 386, 396, 430, 431, 434,
435, 463, 464, 465
library 20, 32, 48, 49, 51, 56, 57, 148, 152,
155, 174, 206, 229, 232, 314, 324, 331, 350,
362, 374, 388, 392, 393, 420, 423, 424, 430,
439, 441, 454, 459, 463, 464
librecalc 213, 214
libreoffice 213
lifo 145, 146, 147, 152
linked 342, 373, 470
Pandas 294, 310, 312, 313, 316, 317, 319,
323, 337
linter1 314
linux 20
lipsum 327, 329
lisp 18
list_current_directory 205
list_example 117
list_of_lists 106
list_string 131
list_with_duplicates 125
listdir 50, 205, 236, 238
listed 228, 231, 232, 313, 384, 478
listing 51, 206, 236, 254
listings 5, 335
lists 38, 82, 91, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104, 105, 106, 107, 110,

115, 116, 117, 118, 119, 121, 123, 128, 129,
130, 131, 133, 136, 137, 138, 139, 140, 141,
142, 143, 150, 151, 155, 156, 157, 159, 160,
161, 162, 163, 164, 165, 171, 215, 216, 217,
218, 220, 240, 305, 306, 311, 326, 337, 396,
397, 413, 414, 415, 416, 417, 418, 424, 432,
449, 453
lists16 101
literal 247, 250, 251
llo 248
load 28, 30, 169, 187, 192, 197, 210, 220,
221, 223, 224, 318, 335, 343, 381, 382, 384,
386, 387, 388, 389, 390, 418, 479
load_config 224
load_default 388
loaf 68
loc 423, 424, 425, 426
local 58, 60, 64, 78, 227, 228, 229, 278,
279, 280, 281, 290, 291, 292, 294, 295, 296,
358, 361
local_variable 280, 281
locale 48
localhost 223, 224, 225
log 23, 196, 209, 223, 225, 228, 254,
259, 260, 264, 269, 270, 273, 284, 285, 447,
455
log10 264, 270
log10_value 270
log_decorator 284, 285
log_file 259, 447
log_file_path 223
log_level 223
log_person_details 447
log_to_file 223
log_value 269
logarithm 264, 276
logarithmic 269
logarithms 261, 264, 269, 270
logger 259, 260
logging 223, 225, 226, 255, 258, 259, 260,
284, 285, 446, 447, 470
logging_interval_seconds 225
logs 33, 65, 172, 259, 260, 285, 287, 291
long 14, 21, 41, 67, 83, 95, 163, 187, 216,
234, 279, 286, 315, 464
loop 26, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 96, 100, 113, 122, 138, 141, 142,
143, 182, 188, 190, 196, 309, 363, 364, 365,
366, 367, 370, 371, 372, 377, 378, 379, 381,
382, 383, 460, 467
ls 52, 169, 237, 238
lst 450
lstat 207
lsvirtualenv 337

M
main_window 367, 368
mainloop 363, 364, 365, 366, 367, 368, 369,
371, 372, 373
mainly 15, 288
make_ 201
make_archive 201
makedirs 200, 202, 239
makefile 324
mask 276

200, 208, 213, 228, 232, 233, 247, 258, 260,
291, 311, 316, 318, 342, 359, 434, 454, 468
increment 87, 122, 266, 369
indent 222, 237, 310
indentation 19, 85, 89, 90, 222, 311, 313,
316, 323, 342
indented 50
index 42, 57, 69, 70, 84, 87, 88, 92, 94, 95,
102, 103, 104, 105, 106, 115, 116, 118, 123,
133, 134, 138, 139, 145, 146, 147, 150, 151,
173, 216, 305, 406, 413, 417, 418, 420, 424,
431, 450, 471, 472, 473, 477, 478, 480, 483
indexed 95
indexerror 149
indices 88, 102, 115, 117, 305, 418
inheritance 35, 38, 41, 44, 55, 56, 354
inherited 40
ini 342
init 375, 376, 378, 381, 382
inner_function 182, 291, 292, 294, 295
inner_value 295, 296
inode 207
inplace 420, 421, 422, 426, 427
input 65, 67, 79, 115, 122, 134, 144, 151,
152, 187, 188, 189, 190, 191, 192, 193, 203,
222, 223, 249, 253, 254, 255, 257, 284, 308,
314, 317, 346, 358, 363, 364, 370, 371, 372,
373, 381, 467, 468
input_frame 371, 372, 373
input_image 389, 390
input_value 295, 296
insert 103, 152, 178, 180, 199, 212, 324,
327, 400, 401, 406, 458, 479
insert_into_file 199
inserted 103, 199, 325, 406
inserted_array 406
inserting 102, 199, 324, 400, 401, 405
insight 14, 139
insights 304, 427
instance 37, 38, 39, 43, 44, 47, 48, 56, 77, 97,
101, 109, 114, 116, 118, 123, 133, 134, 136,
162, 184, 195, 196, 201, 225, 241, 271, 282,
287, 288, 292, 304, 316, 325, 333, 346, 350,
352, 353, 354, 444, 449, 451, 461, 471, 478
instantiate 350, 357
instantiated 357
instantiation 47
int 77, 188, 189, 190, 191, 192, 254,
262, 266, 409, 420, 467, 468
int16 406, 410
int32 406, 407, 408, 409, 410
int64 405, 406, 407, 409, 410, 413
int8 406, 409, 410
int_ 407, 408
int_array 408, 409
integer 63, 77, 78, 87, 95, 107, 129, 134,
156, 161, 188, 190, 191, 193, 254, 262, 269,
273, 274, 275, 276, 405, 406, 407, 408, 409,
410, 419, 420, 421, 424
integers 115, 123, 128, 129, 133, 156, 162,
184, 254, 274, 289, 403, 404, 409, 410, 412,
413, 429, 431, 432, 433
intel 190
intent 448

interpolation 387, 419
interpret 206
interpreter 23, 29, 30, 51, 52, 54, 59, 60,
62, 168, 228, 229, 231, 234, 291, 322, 327,
341, 477
interpreterpath 327
interpreters 52
intersection 123, 124, 125, 128
intersection_result 124
invalid 79, 188, 192, 245, 254, 255, 315, 459
invalid_json 226
invaluable 304, 310, 349, 370
invoke 343
invokes 168
ioerror 203, 204, 388
iot 20, 452, 470
ip 275, 453, 471, 472, 473
ipsum 327
ironpython 16
is_ 467, 468
is_authenticated 273
is_empty 146, 147
is_equal 268
is_even 183, 186
is_greater 268
is_prime 466, 467, 468
is_raining 272
is_subset 127
is_sunny 272
is_superset 128
isbn 2
isinstance 79, 263
isnull 424, 425, 427
isolate 174, 175, 274, 461, 463
isolated 169, 228, 327, 332, 334
iterable 71, 84, 88, 113, 126, 139, 142, 263,
450
iterables 140, 143
iterdir 230
itertools 100, 142, 143

J
java 16, 17, 320
javascript 16, 17, 219
jazzed 366
join 65, 68, 70, 71, 72, 104, 205, 240, 456
joined 230
joining 70, 72, 230
jpeg 386
jpg 387, 389, 390
json 213, 215, 217, 219, 220, 221, 222,
223, 224, 225, 226, 237, 453, 454, 455, 457,
459
json_data 220
json_file 221, 222
jsondecodeerror 224, 226
jupiter 217, 219, 414, 415, 417

K
kernel 32, 33, 464
key 14, 19, 22, 23, 24, 28, 35, 38, 45, 50,
53, 54, 55, 76, 79, 85, 93, 94, 109, 110, 111,

PYTHON UNLEASHED RASPBERRY PI INDEX

200, 239, 276, 277, 278, 326, 363, 374, 375,
376, 378, 430, 470
mp3 381, 382
mpl_toolkits 440
mplot3d 440
msgs 315
multiplexer 474
multiplication 101, 262, 267, 305, 308, 309,
393, 394
multiplication_result 262
mutability 138
mutable 94, 102, 116, 123, 128, 129, 130,
131, 133, 135, 137, 138, 140, 156, 162, 283
my_ 127, 233
my_age 63
my_archive 202
my_custom_bin 233
my_decorator 284, 354
my_deque 150, 151, 152
my_dict 111, 116, 120, 126, 131, 136
my_directory 202
my_house 43
my_list 95, 102, 103, 104, 105, 106, 116,
118, 130, 138, 139
my_list_with_duplicates 118
my_name 63
my_python_modules 234
my_queue 148, 149
my_scripts 234
my_set 123, 125, 126, 127, 128
my_string 131
my_tuple 129, 130, 131, 136, 138
my_var 333
my_variable 293
myapp 223
myapp_db 223
myclass 293, 353
myenv 173, 229, 331
mypy 312

N
namespace 278, 279, 281, 293
namespaces 278, 281, 293
nan 431
nano 472
narray 399, 406
nbytes 409
ncase 257
ncustom 348
ndescriptive 423
ndetecting 424
ndim 403, 404, 405
ndropping 424
nested_dict 117
nested_list 106, 131
nested_tuple 131
nesting 85, 162
new_car 446
new_content 199
new_directory 233, 238
new_list 159, 160
new_list1 99
new_name 198, 238
new_window 367

new_x1 369
new_x2 369
new_y1 369
new_y2 369
new_york 360
newline 82, 83, 195, 214, 215, 218, 243, 244,
248
newlines 213
next 22, 38, 43, 46, 50, 69, 72, 78, 82, 83,
84, 93, 101, 104, 126, 146, 160, 168, 182,
187, 188, 209, 214, 218, 227, 277, 280, 290,
299, 324, 325, 326, 327, 330, 338, 341, 363,
364, 366, 368, 369, 373, 380, 382, 389, 398,
401, 404, 405, 420, 424, 426, 430, 442, 443,
457, 469
next_year_age 188
nextended 71
nfailed 348
nfetching 458
nfiles 230
nfilling 424
nfinal 72
nfirst 423
nhandling 424
ninja 1, 2, 3, 4, 11, 13, 15, 300, 301, 302,
303, 309, 463, 482, 484
notnull 425
np 392, 393, 394, 395, 396, 397, 398,
399, 400, 401, 402, 403, 404, 405, 406, 408,
409, 410, 415, 425, 426, 428, 429, 430, 433,
440, 441
np_array 396
npivoting 424
nreshaped 403, 404
nresult 399
nselecting 423
nshape 403, 404
nsorting 424
nstacking 424
nsuccessfully 348
nsum 403, 404
nsummary 423
nudged 103
nudging 19
null 219, 426
num 76
num1 254, 262, 263, 271, 272, 275, 276,
347
numpy 15, 18, 48, 261, 305, 306, 307, 308,
331, 392, 393, 394, 395, 396, 397, 398, 400,
401, 402, 403, 404, 405, 406, 407, 408, 409,
410, 412, 413, 425, 426, 428, 429, 430, 431,
432, 433, 434, 440
numpy_array 426, 430
nunstacking 424
nusing 71
nweather 458
ny_time_zone 360

O
obj 353, 379
object 35, 36, 37, 38, 39, 41, 44, 47, 56, 65,
67, 77, 78, 87, 113, 114, 126, 130, 136, 138,
141, 142, 155, 156, 157, 160, 161, 162, 163,

masking 274
masks 274, 276
match 64, 68, 75, 116, 132, 181, 225, 241,
242, 243, 244, 245, 246, 247, 249, 250, 251,
293, 305, 308, 366, 394, 398, 399, 400
match1 244
match_dollar 250
match_percent 250
match_word 250
matched 134, 242, 243, 245, 247
matches 85, 241, 242, 243, 244, 246, 248,
249, 250, 251, 253
matches_ 248
matches_any 248
matches_digits 248
matches_either 248
matches_email 248
matches_non_ 248
matches_non_digits 248
matches_non_words 248
matches_start 248
matches_url 248
matches_whitespace 248
matches_word_ 248
matches_word_boundary 248
matches_words 248
matchobject 243
mate 23, 135
math 48, 49, 56, 116, 188, 261, 262, 263,
264, 265, 267, 268, 269, 270, 271, 273, 275,
276, 293, 306, 368, 369, 439, 468, 469
math_ops 56
matplotlib 330, 332, 427, 431, 434, 435, 436,
437, 438, 439, 440, 441, 442, 443
matrices 304, 305, 306, 307, 308, 392, 393,
394, 410
matrix 89, 304, 305, 306, 307, 308, 309,
393, 394, 395, 397, 398, 403, 404, 405, 410,
429, 432, 433
max_result 263
maxdepth 480
mean 13, 35, 42, 53, 75, 96, 173, 281, 306,
350, 395, 396, 419, 420, 422, 425, 426, 427,
429, 430, 432, 433, 440
mean_age 422
mean_columns 395, 396
mean_rows 395, 396
mean_total 395, 396
mean_value 396
meana 395
memory 15, 16, 67, 78, 94, 95, 110, 117,
118, 135, 137, 140, 145, 151, 156, 158, 159,
160, 196, 210, 274, 275, 277, 289, 290, 291,
305, 346, 398, 402, 403, 404, 409, 410, 431,
432, 462
menu 25, 27, 28, 29, 30, 60, 62, 182, 192,
318, 320, 322, 323, 337, 342, 343, 366, 367,
372, 373, 383
menus 26, 58, 362, 368, 372
merge 120
merged_dict 120
merits 312
meta 244, 472
metacharacters 247, 248

metaclass 350, 353, 354
metaclasses 353, 354
metadata 156, 205, 206, 207, 208, 288, 476
metaphorical 178
method 28, 36, 37, 38, 40, 41, 42, 43, 44, 47,
49, 55, 56, 59, 65, 67, 68, 69, 70, 71, 72, 73,
75, 78, 98, 104, 105, 106, 111, 112, 113, 119,
122, 126, 128, 133, 145, 147, 151, 169, 170,
171, 174, 192, 198, 199, 200, 201, 216, 222,
226, 229, 241, 242, 260, 287, 288, 291, 334,
351, 352, 353, 355, 356, 359, 361, 363, 364,
365, 366, 369, 370, 373, 388, 389, 390, 393,
402, 406, 418, 419, 421, 422, 426, 428, 430,
444, 445, 446, 447, 449, 450, 451, 476
methods 35, 36, 37, 38, 39, 40, 41, 42, 44,
47, 55, 56, 65, 67, 70, 71, 72, 79, 94, 111,
113, 114, 116, 121, 126, 132, 133, 136, 138,
140, 147, 159, 170, 195, 196, 200, 210, 216,
229, 283, 287, 288, 350, 351, 352, 354, 357,
383, 387, 391, 393, 403, 404, 405, 413, 419,
423, 425, 427, 428, 431, 432, 444, 446, 447,
448, 449, 450, 477
metric 454, 457, 459
mhz 15
microchip 462
microcontroller 16
microcontrollers 16
micropython 16
microseconds 359
microthreads 16
middle 145, 199, 212, 362
min 100, 225, 263, 426
min_ 100
min_length 100
min_result 263
mind 19, 22, 35, 59, 70, 82, 85, 95, 199,
233, 261, 262, 313, 315, 318, 320, 419
mkdir 167, 238, 239, 336, 472, 479
mkproject 337
mkvirtualenv 336
mnt 32
mo 267, 323
mode 181, 182, 195, 196, 198, 205, 207,
208, 209, 224, 225, 244, 382
model 15, 16, 27, 35, 41, 114, 304, 445,
446, 464
modelling 269
modifiers 247
module 30, 33, 48, 49, 51, 56, 100, 119, 142,
148, 149, 150, 153, 155, 161, 162, 167, 168,
169, 200, 206, 207, 208, 209, 210, 212, 213,
216, 219, 225, 229, 231, 232, 233, 234, 235,
236, 237, 238, 239, 240, 241, 242, 244, 251,
259, 261, 262, 264, 265, 268, 269, 270, 276,
278, 280, 288, 291, 305, 306, 314, 315, 323,
330, 333, 344, 346, 347, 348, 349, 350, 351,
352, 354, 355, 356, 357, 358, 359, 360, 361,
363, 364, 368, 374, 376, 382, 386, 387, 389,
391, 392, 413, 439, 440, 463, 464, 466, 467,
468, 469, 476, 480
modulo 88, 183
modulus 262, 268
modulus_result 262
move 20, 22, 57, 58, 81, 167, 181, 182,

PYTHON UNLEASHED RASPBERRY PI INDEX

111, 120, 126, 127, 145, 146, 147, 150, 151,
152, 153, 253, 362, 364
popen 238, 239
popleft 149, 150, 151, 152
popped 127
popped_element 127, 147
port 223, 225, 471, 472, 473
pos 377, 379
pprint 457
practical 59, 142, 183, 196, 272, 284, 286,
355, 421, 446, 466
prefix 211, 212
preprocessed 420
prime 466, 467, 468
prime_factors 467, 468
prime_test 468
proc 32
process_data 210, 348
process_file 210
process_order 355, 356
product 76, 184, 250, 251, 289, 309, 393, 436
product_result 285
programmatically 455
pseudo 322
psf 310
ptyhonpath 231
pull 93
push 145, 146, 147, 152
pvm 54
pycodestyle 312
pycon 311
pydaily 59, 60, 62, 167
pyflakes 312
pygame 20, 374, 375, 376, 377, 378, 379,
380, 381, 382, 383, 384
pygamesound1 381
pylint 294, 312, 313, 314, 315, 316, 317,
319
pylint_test 315, 316
pypi 57, 173
pyplot 435, 436, 437, 438, 439, 440, 441
pypy 16
python3 23, 24, 25, 27, 33, 50, 52, 58, 167,
168, 169, 173, 174, 313, 322, 330, 331, 334,
336, 338, 392, 439, 456, 463, 472, 473, 474
python_version 349
pythonpath 227, 229, 231, 232, 233, 234
pytz 331
pyvenv 62

Q
quad 15, 16
quantifiers 249
query 453, 455, 459
query_params 457
queue 145, 147, 148, 149, 150, 152, 153
queues 93, 145, 147, 148, 149, 150, 151
quotechar 214, 218
quotient 267
R
radians 269, 270, 276, 369, 370
radius 41, 55, 143, 416, 417
ram 15, 16
randint 379, 380, 410, 429, 433

random 32, 276, 374, 375, 376, 378, 379,
380, 410, 429, 430, 432, 433, 440, 441
range 18, 48, 81, 82, 83, 84, 86, 87, 89, 90,
100, 102, 110, 118, 138, 177, 178, 179, 186,
216, 280, 286, 290, 297, 307, 312, 327, 332,
333, 349, 361, 364, 386, 406, 407, 428, 431,
433, 477
raspbian 16
raw 407, 414, 415, 419
read 19, 26, 30, 54, 85, 91, 140, 162, 163,
187, 189, 195, 196, 197, 198, 199, 203, 204,
205, 206, 207, 208, 209, 210, 211, 212, 213,
215, 219, 220, 221, 222, 223, 225, 238, 251,
287, 288, 291, 292, 295, 310, 322, 323, 354,
373, 415, 416, 418, 453
read_csv 416, 417, 418
read_csv_file 214, 215
read_number 191
read_text 231
reboot 33, 62, 336
rect 377, 379
recursive 90, 99, 288, 289, 296
redundancy 45, 56, 421
redundant 462
regex 247, 248
regexes 244
remainder 183, 268
remainders 268
remote 260
removal 114, 172
rename 198, 212, 238, 426
render_template 471, 473
repair 32
repeat 81, 90, 133, 182, 287, 406
repl 26, 243
reports 65
repositories 57, 172, 173
repository 172, 173, 312
repr 445, 446, 447
request 172, 453, 455, 457, 458, 459, 460,
461
requested 91, 459
reshape 403, 404, 405, 410, 425, 427
reshaped_array 403, 404
reshaping 419, 420, 421, 424, 427, 428
reside 338
resize 26, 363, 386, 387, 391, 398
resized_image 387
resolve 170, 184, 259, 291, 293, 389
resource 203, 253, 288, 383, 470
result_array 426, 430
result_exp 264
result_list 97
result_log 264
result_log10 264
result_log_custom_ 264
result_log_custom_base 264
result_matrix 393, 394
result_pow_math 264, 265
result_pow_operator 265
reverse 41, 73, 74, 86, 88, 134, 138, 140,
142, 151
rgb 376, 387, 388, 389
rgba 387
rmdir 238, 239

164, 165, 207, 210, 211, 219, 220, 221, 223,
229, 230, 231, 242, 243, 290, 316, 326, 343,
350, 359, 360, 361, 364, 379, 380, 389, 407,
408, 413, 444, 445, 446, 447, 465, 469
object_array 408
occupy 276
oop 35, 38, 40, 42, 44, 47, 65, 67, 113,
114, 136
open_button 367
open_garage 40, 43, 44
open_new_ 367
open_new_window 366, 367, 368
opened 211, 320, 340
openweathermap 452, 453, 454, 456, 457,
459, 460, 461
operand 257, 267, 272
operands 267, 272, 273, 274
opt 32, 116, 117
optimisation 274, 285
org 251, 252, 381, 454, 456, 457
origin 369
original_ 162
original_dic 119
original_list 155, 157, 158, 159, 160, 161,
162, 164
os 16, 19, 24, 25, 31, 50, 51, 58, 170,
171, 197, 198, 199, 200, 201, 202, 205, 206,
207, 208, 209, 227, 228, 231, 233, 234, 235,
236, 237, 238, 239, 240, 333, 346, 349, 479
oserror 205
outlines 36
28, 445, 446, 449, 450, 454, 465, 477
output_from_dict 417, 418
output_from_lists 417, 418
overflow 184, 289

P
package 57, 129, 133, 155, 168, 170, 171,
172, 173, 174, 175, 201, 324, 328, 331, 333,
392, 393, 466, 468
package_name 171, 173, 174, 175
packages 25, 32, 33, 58, 168, 170, 171, 172,
173, 174, 175, 228, 229, 232, 324, 330, 331,
344, 346, 347, 349, 392, 393, 456, 463
packed 33, 48, 140, 182, 201, 261, 276, 373
padding 366, 371, 473
paddle 374, 375, 376, 377, 378, 379, 380
palindrome 151
pandas 17, 18, 48, 330, 331, 412, 413, 414,
415, 416, 417, 418, 419, 420, 421, 422, 423,
424, 425, 426, 427, 428, 429, 430, 431, 432,
434, 435, 436, 437, 438, 439, 442, 443
parameter 47, 66, 75, 76, 88, 213, 282, 283,
287, 363, 380, 395, 410, 415, 418, 427, 428,
478
parameters 45, 56, 77, 201, 221, 223,
284, 296, 453, 455, 459, 476
parsing 196, 209, 213, 226, 358
, 378, 383, 392, 407, 427, 435, 477
password 223
path 22, 199, 201, 202, 205, 212, 218,
227, 228, 229, 230, 231, 232, 233, 234, 235,
236, 238, 239, 240, 318, 324, 325, 327, 337,
338, 341, 342, 346, 347, 348, 349, 381, 382,

388, 389, 390, 392, 416, 418, 468, 470, 479,
481
path1 230
path_parts 237
pathlib 229, 230, 231, 234
pattern 85, 89, 90, 241, 242, 243, 244, 245,
246, 247, 248, 249, 250, 251, 252, 351, 352,
354, 355, 356, 383
pattern_dollar 250
pattern_percent 250
pattern_word 250
pause 27, 181, 183, 290, 325, 375, 376, 384
pca 304
pcs 52
pdb 324, 325, 326
pdf 332, 477
pdfs 477
pep 310, 311, 312, 313, 316
pep8 5
peps 310, 311, 319
permanently 228, 232
person_dict 114
person_list 447
person_log 447
pf 201
pico 16
pigpio 464
pihome 59
pil 386, 387, 388, 389, 390
pillow 386, 387, 388, 389, 390, 391
pillow_text_ 389
pillow_text_example 388
pip 168, 170, 171, 173, 174, 175, 229,
313, 314, 324, 330, 331, 332, 386, 392, 439,
456, 471, 477
pip3 171, 173, 174, 175, 374
pipe 246
pipelines 291
pipenv 333
pipfile 333
pivot 419, 420, 421, 424, 425, 427
pivot_table 420
pixel 383
plaugins 329
play 38, 57, 73, 94, 187, 375, 376, 381,
382, 384, 425
play_audio 381, 382
plot 427, 428, 435, 436, 437, 438, 439,
440, 441, 442, 443
plotly 435
plt 435, 436, 437, 438, 439, 440, 441,
442, 443
plug 32, 327
plugin 327, 328
plugins 327, 328, 477
png 386, 387, 388, 389, 390
point 13, 14, 31, 54, 59, 86, 95, 135, 136,
146, 156, 168, 180, 183, 196, 262, 264, 275,
276, 287, 290, 310, 313, 323, 324, 325, 334,
336, 367, 391, 395, 407, 408, 409
point2d 136
polymorphism 35, 38, 40, 41, 44, 448
pop 21, 23, 25, 27, 52, 95, 104, 105, 110,

PYTHON UNLEASHED RASPBERRY PI INDEX

sliced 104
sliced_list 104
slicing 68, 73, 74, 102, 104, 130, 160, 161,
162, 397, 413
sns 439
soc 462, 463
sort 106, 118, 120, 138, 140, 251, 252,
282, 361, 426, 456
sort_emails_by_type 252
sort_values 424, 426
sorted 106, 118, 120, 206, 252, 282, 468
sorted_by_keys 120
sorted_by_values 120
sorted_data 282
sorted_emails 252
sorted_list 106
sorting 21, 105, 106, 117, 118, 120, 121,
138, 140, 282, 332, 360, 361, 415, 425
source 14, 22, 54, 169, 173, 200, 201, 202,
223, 239, 291, 293, 326, 330, 331, 336, 341,
343, 351, 456, 479, 480
source_dir 201, 202
source_file 200
source_folder 201, 202
southbridge 463
spellcheck 328
spelling 310, 328
sphinx 476, 477, 478, 479, 480
sphinx_test 480
split 65, 68, 69, 72, 121, 122, 190, 237,
241, 252, 328, 329
sprite 377, 378, 379, 380, 381, 383
spritecollide 380
sprites 374, 380, 383, 384, 386
spritesheet 384
spritesheets 384
sq_root 49, 56
sqrt 49, 56, 265, 269, 293
square 49, 56, 57, 95, 109, 115, 116, 219,
265, 269, 276, 290, 332, 342, 433
squares 290, 378, 429, 430
srv 32
st_ 205
st_atime 208
st_ctime 208
st_dev 207
st_gid 207
st_ino 207
st_mod 207
st_mode 207, 208, 209
st_mtime 205, 207, 208
st_nlink 207
st_size 205, 207, 208
st_uid 207
stack 21, 145, 146, 147, 148, 152, 153,
255, 260, 289, 424, 425, 427
stars 374, 375, 378, 380
start_engine 114, 357
start_heater 37
start_time 286
startangle 437
statement 65, 66, 67, 69, 81, 82, 83, 84, 85,
88, 105, 111, 134, 203, 231, 255, 258, 290,
397
std 440

str 77, 188, 191, 205, 255, 260, 293,
380, 446
str_ 408
strftime 205, 359, 361, 364, 365, 366, 457
string 40, 63, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 77, 78, 79, 91, 112, 129, 131, 151,
156, 162, 188, 189, 190, 191, 192, 193, 196,
208, 210, 220, 223, 226, 241, 242, 243, 244,
245, 246, 247, 248, 249, 257, 262, 289, 358,
359, 361, 365, 407, 408, 415, 444, 445, 446,
450, 451, 473
string_ 407
stringvar 372, 373
strip 79, 192, 196, 210
sub_list 102
subclass 350, 351, 356
subclasses 256, 288, 350, 351, 352, 355, 356,
357
subclassing 255
subplot 443
subprocess 237, 238, 239
subtraction 96, 97, 101, 262, 266, 267,
305, 307, 308, 393
subtraction_result 262
sudo 24, 25, 171, 173, 313, 328, 335, 392,
456, 472, 473, 474, 477
sum 54, 56, 197, 263, 282, 286, 287, 296,
297, 307, 314, 317, 347, 348, 403, 404, 405,
410, 427, 429, 430, 432, 433, 478
sum_result 263, 285
swap 102, 221
swapcase 72, 73
symbol 30, 46, 179, 321, 351
symmetric 123, 124, 127, 128
symmetric_ 124, 127
symmetric_difference 126
symmetric_difference_ 127
symmetric_difference_result 124, 127
sympy 48
sync 477
syntax 19, 30, 45, 74, 77, 86, 134, 177, 180,
185, 189, 247, 281, 284, 287, 291, 294, 297,
314, 322, 323, 351, 354
sys 33, 118, 234, 339, 346, 347, 348,
349, 381, 382, 468, 479, 481
sysfont 375, 377, 378
system 16, 17, 18, 25, 27, 28, 31, 32, 33, 37,
51, 52, 54, 57, 58, 67, 120, 168, 169, 170,
171, 172, 173, 175, 190, 197, 205, 206, 207,
211, 212, 215, 221, 227, 228, 229, 231, 232,
235, 237, 238, 239, 240, 259, 333, 334, 335,
337, 346, 349, 382, 388, 392, 414, 452, 462,
463, 474, 477
systemexit 256
systems 16, 18, 20, 21, 32, 51, 58, 145, 173,
207, 219, 221, 223, 234, 304, 358, 386, 407

T
tan 269, 270
tan_value 269
tap 50
tar 201
target 138, 383
tau 265

rmtree 202, 239
rmvirtualenv 337
root 31, 32, 56, 58, 171, 223, 228, 232,
265, 269, 276, 334, 368, 369, 370, 371, 372,
373, 468, 471, 472
rotate_button 368
rotate_line 369, 370
rotated_image 387, 390
rotatelineapp 368, 369
round 265, 268, 269, 276, 291
rounded 265
rounded_value 265
row 40, 41, 81, 82, 83, 92, 213, 214, 215,
216, 218, 221, 222, 305, 306, 307, 309, 395,
396, 398, 399, 400, 403, 404, 405, 410, 414,
415, 417, 418, 429, 430, 432, 433
row_sum 403, 404
row_sums 429
rpython 16
rst 478, 480
rw 205, 206
rwx 205
rwxr 209

S
s_ifdir 208
s_iflnk 208
s_ifreg 208
s_irgrp 208
s_iroth 208
s_irusr 206, 208, 209
s_isdir 208
s_iwusr 206, 208, 209
s_ixusr 208
sans 472
save 28, 48, 101, 156, 221, 258, 260, 275,
316, 318, 324, 326, 331, 333, 336, 341, 347,
386, 387, 388, 389, 390, 402, 404, 416, 417,
418, 430, 466, 472, 473
sbin 32, 227, 228, 229
scalable 18, 91, 448
scalar 305
scale 17, 18, 67, 383, 387, 472
scales 79
scikit 17, 431
scipy 18, 48, 261
scope 26, 27, 30, 64, 78, 175, 277, 278,
279, 280, 281, 282, 283, 291, 292, 296, 326
score 132, 314, 374, 375, 378, 380, 381,
438
scratch 19, 38, 41, 172, 322, 481
screen 5, 23, 25, 26, 47, 49, 68, 182, 313,
316, 320, 333, 364, 366, 368, 370, 374, 375,
376, 377, 378, 380, 381, 383, 461, 474
screen_height 375, 376, 377, 378, 379
screen_width 375, 376, 377, 378, 379
screens 383
scribble 322
script 20, 22, 26, 168, 174, 202, 215, 232,
233, 234, 260, 274, 278, 280, 287, 291, 314,
316, 317, 323, 324, 325, 326, 327, 336, 341,
342, 343, 346, 347, 348, 349, 382, 418, 468,
471, 474

sd 187
sdl 374
seaborn 431, 439, 443
seaborne 439
segment 195
segments 19, 36, 241
select 27, 28, 29, 59, 60, 61, 169, 192, 210,
320, 323, 338, 367, 372, 423, 425, 426, 452,
456, 464
sensor 225, 464, 470
sensor_thresholds 225
sentence 40, 70, 71, 72, 121, 122
sentence_extended 71, 72
sentence_join 71
sentence_plus 71
sentences 65, 121
separator 70, 71, 234
serial 32
set 22, 25, 27, 37, 39, 48, 58, 59, 60, 64,
71, 81, 87, 88, 90, 91, 95, 122, 123, 124, 125,
126, 127, 128, 129, 130, 133, 138, 152, 167,
169, 178, 181, 182, 183, 191, 203, 206, 207,
210, 231, 232, 233, 260, 261, 291, 317, 320,
323, 324, 327, 330, 331, 333, 334, 335, 336,
337, 338, 339, 341, 362, 363, 364, 365, 366,
369, 372, 375, 376, 377, 378, 382, 389, 444,
455, 456, 459, 470, 474, 478, 479
set_caption 375, 376, 377, 378, 381, 382
set_mode 375, 377, 378, 381
set_title 441
set_trace 324, 325
set_xlabel 440
set_ylabel 440
set_zlabel 440
setdefault 237
setformatter 259
setlevel 259
setmode 465
setrecursionlimit 346
sets 25, 91, 119, 123, 124, 125, 126, 127,
128, 136, 172, 225, 244, 260, 274, 304, 332,
337, 366, 370, 441, 444, 445, 446, 458, 471
setup 48, 57, 58, 167, 202, 259, 260, 262,
288, 324, 331, 343, 367, 373, 375, 376, 392,
442, 452, 459, 462, 463, 465, 471, 478
setup_logger 259, 260
setvirtualenvproject 337
shadow 292, 392
shadow_example 292
shadowed 292, 295
shadowing 292, 293, 294, 295, 296, 310
shadows 292, 294
shallow 119, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165
shallow_ 164
shallow_copy 119, 155, 159, 160, 161, 162,
163, 164
shallow_list 158
shut 91
shutil 200, 201, 202, 239
sin 265, 269, 270, 369
sin_value 269
sine 265, 276
slice 102, 104, 129, 397

PYTHON UNLEASHED RASPBERRY PI INDEX

variable 33, 47, 63, 64, 65, 66, 71, 73, 74, 76,
77, 78, 79, 83, 87, 91, 133, 134, 156, 181,
187, 191, 227, 228, 229, 231, 233, 234, 259,
266, 267, 273, 278, 279, 280, 281, 282, 291,
292, 293, 294, 295, 296, 297, 315, 321, 324,
325, 326, 333, 335, 364, 372, 396, 397, 400,
417, 432, 459, 460
variable_name 326
vector 304, 305, 448, 449
venv 167, 168, 169, 170, 173, 175, 228,
324, 330, 331, 333, 338, 341, 343, 344, 456
verbose 244
version 23, 24, 25, 26, 27, 28, 33, 40, 46, 57,
58, 59, 60, 62, 73, 74, 82, 123, 126, 167, 168,
169, 173, 174, 175, 179, 184, 223, 289, 326,
328, 331, 332, 333, 334, 344, 349, 361, 388,
392, 421, 463, 479
vert 438
vertically 387
via 28, 37, 62, 169, 171, 318, 333, 341,
342, 355, 356, 415
virtual 28, 32, 33, 54, 57, 58, 59, 60, 61, 62,
167, 168, 169, 170, 173, 174, 175, 227, 228,
229, 233, 234, 314, 318, 320, 323, 324, 326,
327, 330, 331, 332, 333, 334, 335, 336, 337,
338, 339, 341, 343, 344, 374, 386, 392, 393,
439, 456, 463, 464, 471, 474, 477, 478, 481
virtual_env 233
virtualenv 335
virtualenvs 336
virtualenvwrapper 335, 336
virtualenvwrapper_python 336
virtualvens 336
void 407

W
wav 381, 382
weather_api 223
weather_data 454, 455, 457, 458
weather_history 458, 460
weather_record 457, 458
web 17, 20, 22, 32, 219, 221, 225, 386,
452, 454, 456, 470, 471, 472, 474, 477, 480
whatis 326
wheel 48
whenever 30, 48, 64, 93, 174, 282, 330, 353
wipe 105
wiped 33
word 13, 47, 63, 64, 68, 72, 121, 122, 241,
242, 243, 248, 250, 251
word_count 122
workon 337
workon_home 335, 336, 337
workspace 59
write 13, 17, 18, 19, 20, 21, 22, 26, 41, 45,
49, 54, 64, 79, 90, 91, 92, 107, 134, 144, 193,
196, 197, 198, 199, 203, 206, 207, 208, 209,
211, 212, 213, 219, 220, 221, 222, 226, 234,
240, 244, 276, 278, 288, 293, 296, 306, 308,
313, 320, 328, 361, 374, 404, 410, 422, 432,
443, 447, 457, 464, 465, 468, 478
write_text 231, 363, 364
writelines 196
www 14

wx 205

X
x_int 262
x_str 262
xml 453
xor 274
xpos 440
xr 206, 209
xx 293

Y
y_float 262
y_str 262
ypos 440

Z
zerodivisionerror 254, 257
zeros 274, 309
zip 96, 97, 101, 140, 141, 142, 143, 201,
202
zip_directory 201, 202
zip_file_name 202
zip_file_path 202
zip_longest 100, 142, 143
zip_name 201
zip_path 201, 202
zpos 440
zsort 440
π 264, 265

tau_value 265
temp 212, 454, 455, 458, 460
temp_dir 211
temp_file 211, 212
temp_max 454
temp_min 454
temp_unit 457, 459
temperaturelogger 225
tempfile 210, 211, 212
tensorflow 18
terminal 23, 24, 29, 30, 33, 50, 51, 54, 62,
167, 169, 171, 215, 228, 232, 233, 315, 316,
320, 321, 322, 326, 330, 335, 336, 362, 363,
384, 455, 474, 480
text_height 388
text_to_insert 199
text_width 388
textbbox 388, 389
textenv 336
thonny 25, 26, 27, 28, 29, 30, 31, 33, 50, 54,
58, 59, 60, 62, 167, 169, 173, 177, 179, 180,
181, 182, 183, 184, 185, 205, 294, 310, 316,
318, 320, 322, 324, 330, 333, 334, 384, 392,
393, 466
thony 179, 181, 185
threaded 148, 150
tick 364, 377, 379, 383
ticker 151
time 13, 14, 18, 19, 20, 21, 22, 28, 29, 30,
32, 35, 43, 48, 49, 52, 53, 54, 63, 77, 78, 79,
91, 95, 101, 114, 121, 123, 141, 142, 151,
152, 160, 167, 169, 171, 181, 184, 188, 195,
201, 205, 206, 207, 208, 239, 240, 283, 285,
286, 287, 290, 296, 297, 304, 313, 314, 316,
322, 324, 328, 335, 337, 338, 342, 343, 356,
358, 359, 360, 361, 363, 364, 365, 366, 370,
375, 376, 377, 378, 380, 383, 384, 398, 419,
430, 431, 435, 436, 445, 456, 457, 458, 459,
462, 463, 465, 471, 481
timed 297
timedelta 359, 408
timedelta64 408
timedelta_array 408
timer_decorator 286, 287, 296, 297
timestamp 260, 457, 458, 459
tin 19, 66, 269
tk 362, 363, 364, 365, 366, 367, 368,
369, 371, 372, 373
tkinter 362, 363, 364, 365, 366, 367, 368,
370, 371, 372, 373
tmp 33
tmux 474
to_ 426
to_csv 417, 418
to_entertainmentroom 36
to_numpy 426, 430
toctree 480
toggle 273, 368, 369
trace 182, 255, 260, 346
traceback 255
traits 140
transparency 387
transport 201
tree 200, 201, 202, 327, 328

trig 264
truetype 388, 389
ttf 388, 389
ttk 367
tuple 71, 84, 87, 94, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 143,
144, 189, 190, 193, 282
tuple_string 131
typeerror 87, 96, 136, 257, 280, 350, 357
types 16, 38, 39, 42, 52, 63, 81, 83, 93, 94,
109, 111, 116, 129, 138, 148, 155, 162, 177,
185, 192, 193, 207, 220, 251, 252, 254, 257,
277, 279, 293, 296, 342, 355, 372, 373, 406,
407, 408, 409, 410, 412, 413, 414, 419, 420,
421, 426, 427, 428, 429, 431, 432, 435, 439,
448, 471, 476
tzdata 331

U
uint16 407
uint32 407, 408
uint64 407
uint8 407
uint_array 408
unicode 407, 408
unicode_array 408
union 123, 124, 128
union_result 124
unique 39, 40, 45, 52, 57, 75, 109, 110, 114,
115, 116, 117, 123, 125, 128, 132, 135, 136,
140, 152, 153, 156, 281, 282, 296, 312, 421,
444, 453, 455, 470, 471
unique_keys 117
unique_list 125
unique_set 125
unique_to_ 125
unzip 142, 201, 202
unzip_archive 201, 202
update 24, 25, 48, 58, 126, 127, 132, 140,
171, 196, 198, 216, 221, 233, 267, 316, 327,
328, 364, 365, 366, 373, 375, 377, 378, 379,
383, 389, 422, 456, 468, 480
update_datetime 364, 365, 366
upper 60, 314, 316, 317
upper_case 315
url 454, 459, 470, 471
urlencode 457
urllib 457
urls 248, 453
usb 32, 462
usr 27, 33, 58, 172, 227, 228, 229, 334,
336
usual 50, 112, 253

V
validate 188, 251
24, 425, 427, 449, 450, 476, 478
valueerror 104, 106, 133, 178, 188, 191, 254,
255, 280
var 33, 223, 326

PYTHON UNLEASHED RASPBERRY PI INDEX

60

BOOKS FOR YOUR
RASPBERRY PI
The Coding Press brings you the latest in hands-
on computer programming confidence. The Novice
to Ninja series caters to any beginner and will take
you to a different level of programming — the
Ninja Programmer. Whether you're completely new
to coding or have some experience, our books

provide the foundation knowledge and practical skills needed to write your
own programs with clarity and confidence. With clear explanations and
example programs, you'll explore coding in a way you never imagined. Our
pages will transform you into a confident and capable programmer in the
genre they cover.

You'll pick up best practices for writing clean, efficient code and gain the
skills to debug and troubleshoot your programs effectively.

By the end of our books, you'll be equipped to tackle your own projects and
solve problems in the subject matter covered. Our books provide a gateway
to new ways of thinking and creating. Whether you're aiming to start a new
career, enhance your current skills, or simply take on a new hobby, our
Novice to Ninja guides will help you reach your goals. Step into the ongoing
future of programming and unlock your coding potential today.

www.codingpress.com.au

 www.brucesmith.info

