RASPBERRY PI EDITIOﬁ

PYTHON
UNLEASHED

BRUCE SMITH

NOVICE TO NINJA

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

CONTENTS

00: Novice to Ninja....cceeeeeeiiiiiiieieneieieeeeeeeeenens 13
Raspberty Pi Versions ... 14
Python TYPES ... 16

01: Hello cuuuerreireeeeeiiiiiiiiininnnnnnineeeeeeeeeeeeennennns 17
P1 SPace.....ciiiici e 19
Python USES ..oceceeriiiceierriccrereeeiereeneseeneneeseseeenenes 20
Learning....ccvvvrciniiic s 21
Checking IN ..o 24

02: Python INteractiveccceeeeieieeeeeeeeeennnnnnnnnns 25
IDE o 25
TryIng It QUL 28
A Real Program ..., 28
Thonny Windows.......cviiniins 30
The Raspberry Pi File System......cccovvcneunicrreereenceeeninnn. 31
Important Line Wraps.......ccocoiiiniicnniicci 33
QUESTIONS evevrvrrereierereteieieeeieaeseseseee ettt tsasesasseees 34

03: A Matter of Styleccceeeeiiiiiiiiiiiiiiiiniineeennnns 35
Object-Oriented Programmingccoeeeeveeueenieeenienneeees 35
The BlocK ... 36
Constructor and Attributesccocvevicviivnienieeeen 37
Inheritance and Polymorphism.......cccccovvivininnicininnnane 38
Class INStANCE ...vvviieciciiiicicicccc e 38
Detived Classes ...c.veueuierrieurieirieirieieeieeneeeseeesseeenseans 40
Methods in the House Class.......ccocvercuvneeniceniennecnneaee 40
Classes Galore ... 41
Polymorphism Example.........ccccccviivinivninninnicricaen 42
Programming OOP ... 43
Combining Snippets into a Full Programccccccceuuee. 44
QUESTIONS evevvvrrrierereieieieaeeeeeeeaeaeee ettt sesesesesaees 44

PYTHON UNLEASHED RASPBERRY PI

04:

05:

06:

07:

08:

09:

Foundationseeeeeeeeeeeiiiiiiiiiiiiinninnnnnnnne 45
Modules and Librafies ... 48
Python Interactive Shell........cccciiiiiiiiiiniic 50
Terminal Shell.......ccooiiiiice 51
BYtecode ... s 52
Python Virtual Machine (PVM).....cccceervvncvcrvnncccnennen 54
The ANSWEL ..o 54
Environments.......coooueeeeeeeennnnneeeeenennnnnne. 57
Version NUMDELS ... 58
Virtual Environments with Thonny.......cccccevnecereenenee 59
QUESTIONS ettt ettt 62
Variables & Strings......cccceeeeeeeeeeeeeiiiiiinnnn. 63
SNG THEOTLY coucviiiiicicircreece s 65
Chopping Up Made Easy.......ccccoooievicnicncvninienne 68
Haystack Needle.......coovuivinininiciiciiiciiciiccicccenes 69
The Dynamic DUO ... 70
The Other Dynamic DUo ..., 70
Case SWaPPING ... 72
Reversing a String........ccccvviiiiiiiiccncccs 73
Passing Multiple ArgumMEents.......c.cocveeuvecrvencrrereereriennenens 74
Object TYPC..oiiiiiiiiciiciiciri s 77
£-SEINGS oo 79
QUESTION 1ottt 79
| 00 o 1N 81
FOr LLOOP ot 83
While LOOP ..o 83
Loop Control Statementsocccceueuviniccreinirincensinennes 83
Nested LOOPS e 84
ElSe StatemMEntsceveueeieeeieeeieenieenreenreeeeeseseeeeeeeneeeeens 85
Looping with an IndeX......ccocccvevciiicnncvncnnnniene 87
Nested LOOPS ..o 89
QUESTION 1ottt 91
LiStS ceveiieiiiinnnnnnnnnntriiieeeeeeeecnecceeanannene 93
Common LiStS ..t 94
Working with List Operators......c.ocveveurieierierrereensieinnees 95
Working With Different Lengths ..o, 100
When to Use List Comprehension.........cccveviiniinennee. 101
Changing List Elements ... 102
Adding Elements to a LiSt....coccveecrrncirncenicnicnrecnn. 103
Some Handy List Operations..........cccceecueeveeeuvcceniecunenes 103
Counting, Finding, Sorting & Multidimensional.......... 106
Exercise: Putting It All Together ..o 107
Dictionarieseeeeerueeeeeeeeninneeeeenccnnnnnen. 109
Dictionaries and OOP.........covvrivcvininicnin, 113
Similar But Different.......ccoccveiviciiciiiniiiniinininieans 115

10:

11:

12:

13:

14:

15:

16:

Raspberry Pi PYTHON Novice to Ninja

SetS ettt 123
ModifyIng Sets.....ccivviivviiiiiiiiieiieiees 126
Which One Whete? ..., 128
QUESHIONS vttt ettt 128
TUuPles coovvnneiieiiiiiiiieecce e, 129
S0 Special.....ciiiii 129
When and How to Use Tuples.....ccovvcininiivinicineines 130
Tuple Methods....ccveieeiciriciricrcieeeeeee e, 133
Tuple Packing and Unpacking........ccoeceeveeuvecrrecueencnnn. 134
Single-Element Tuples.........ccoeeuviirninnicnicinicinicneaes 135
Why Choose Tuples Over Dictionaties?ccceuunee. 135
Tuples vs. LISES: .o 137
UsINg enuMmMErate()ovveeueueirenicueieiriniciensisiseseessisesaenes 138
Tuples vs. Lists: What’s the Difference?........c.cccuvuueeeee. 140
The ZIPPEL .o 140
Practical Uses fOr ZIPcoieuicnicinicricviceeeeeeens 142
QUESTIONS evvvvvviiieiieeeeaeseeee sttt ettt be bbb sene 143
Stacks & QUEUES ...ceueerenniienecrennceeneceennnnnes 145
Using a List as a Stack or Queueccccccveeeuvenicenicnnee. 147
First-In-First-Out (FIFO)....coviiiiiriiiicein, 148
Queue Module (Queue Class)cccvvereeererreneecerennene. 148
Deque... e 150
Use Cases for Dequescccvicicivininccininiiccienccnes 151
Exercise: Mastering Stacks and Queuescccveueneeee. 152
Deep and Shallowccceevnnnnnnnnnnnnnnnnneenn. 155
WROW! oo 156
Another Look at Shallow Copyccccvuiinivirininennnn. 157
Deep Copy: The Real Deal.........ccoviiiiiviniiiiiiiiins 160
When to Use a Shallow COPy....c.cvceeeeeemricuricmrecreenennn. 162
Exercise: Deep and Shallow Copying.........ccvecuvecunnee 164
Environments +.......eeeeieiinneeeeiiiiinnneeennn. 167
Common Issues and Troubleshootingc..cccvucune. 170
APT and PIP .o 170
Pip Pip3 Hooray!......ccoiiiiiiiiiiiiiiniccnns 173
Is it Apt for the Raspberty Pi 2. 175
QUESTIONS evvvvviiiieieieieeeaeee ettt bbb besene 175
Morte Thonny......ccceeeeeeiiiiiiiirrrnnnneeeeeeeeeens 177
Use a Debugger ... 181
Debugging in Thonny ..., 181
Thonny In and Out ..., 182
QUESTIONS vttt be e 185
Inand Out.....ceenriiiiiiiiiiiiececeeeee, 187
Handling Errors and Validation.........cccecevcivicinicneaes 188
Capturing Multiple Inputs at Onceccovvevvcvvicienes 190

PYTHON UNLEASHED RASPBERRY PI

17:

18:

19:

20:

21:

Input with Validation: A Menu Example...........cc.c...... 192
Common Input Mistakes to AvOid.......ccceververrerninennnn. 193
Exercise: Using Input and Outputccceevvieviicinnnns 193
File HandlNgoovveeveenereesereessseesnnens 195
Opening, Reading and Reading Filesc.ccccccovuniuvennene 195
Renaming FIles ..o 198
Checking File EXIStENCEcovievviniviiiiiiiniisiisinieenns 199
Inserting Data into a Filecccciiiiiinniiiniiiinn, 199
Shutil Module......ccoviiiiriiiiin 199
File Tree Management.........ccceecueeeeemcecmneeemrecmseeneeenns 200
Archiving and Compression......c.ocuvcuvenceeuncecunicmnecnnn. 200
Deleting and Copying a Directory Treeccovurvuneen. 202
Context Managers ... 203
Error Handling....c..ccveuveeunecinenccnicnicnecneceeceeeees 203
Handling File Errors with Try-Except .c..ccoveeuveiueeneee. 204
Using else and finallycocoeeviecnicnicncncncenenens 204
File Permissions ... 204
Stat Module......cooveieiiece e 206
Processing a File.......ccoocviiiicinicnicncic 209
Handling Large Files.....coccvienenenicncncreeeeaes 210
Passing File ODbjects:.....coeuveieieniernieniereereeeeeeees 210
Tempfile Module ..o 210
QUESTIONS ettt ettt et ee 212
CSV and JSONoevverrenreeeererserseesenann. 213
Dictionary of ListSi.c.ocncreeeeneieeniennierneenreenseeneeeens 217
What 18 JSON? ..o 219
Configuration Files ..o 221
JSON config File ..o 223
Handling JSON Ef1oOfsc.covviiiiiciniciniciiicciiines 225
Path & Pythonpath...........uueueeeeeeneneennn. 227
Virtual Environments and $PATHcoovvvvvevvvcvvnieee. 228
PAthIib .o 229
PTYHONPATH ..o 231
PATH vs. PYTHONPATH.......cccoeoiiniiriiiiiiinieinn, 232
QUESHIONS ettt ettt 234
OS Moduleuiiiiiiiiiiiiiiiiiiiiiiennnnennnnnnne. 233
QUESTIONS ettt ettt benene 234
Writing a List of Files in a Directory to a List............. 235
Listing Directories and Sub-directotiesccevvuewnnee 236
Directories, Sub-directories, and Filesc.ccoevevvevennnen. 236
Capturing OUtPUL......cvvviiiciiic s 237
Environmental Variables........ccccoovieviininiiininnnnn 239
Regular EXpressions.......eeeeeeeeeeeeeeeeeen. 241
Usetul FUNCHONSceveiiieceecicecceeeeeeseeeeees 242
Common Regular Expressionscccccvvvnccinicnnenne 243

Raspberry Pi PYTHON Novice to Ninja

MetacharaCters.. ... 247
Greedy Matching........ccccvveciviciiiiininiiniieienccscenenes 248
Lazy (Non-Greedy) Matching:........ccccooeviivinivinininnnnn 249
Exploring Regular Expressions.........occvviccininicnes 251
22: EXCEPUONS...ciiiiiiiiiiiiiiiiiienneeienneennsssasaaaeee. 253
Handling Multiple EXCeptionsccocvueeirierrersieninnnnn. 254
Exception Hierarchy ... 256
Common Mistakes Using Exceptions.........ccceceucucuenee. 258
23: Math ... 261
Trig, Exponential, and Log Functions.........ccccceueevnne. 264
Using Math COonstants.........ccevevierninniiiinnininenens 265
More Math Operationscccccevinivecininiciccininiienes 267
The Math Modulecveureuriecirncreeeneereereeneeeaeene 268
Trigonometric and Logarithmic Functions................... 269
QUESHIONS ettt ettt ee 276
24: Advanced Functions..........ceeeeeueeeeeeeccnnns 277
Namespace and SCOPE.....cueueuieernierrierreeirieeeieenseeens 278
The Lambda FUnction.........cceeeuvevcencenicnnicnnicneecnen. 281

It s About CloSUre........ceveviirieiice e, 283
Understanding Decorators ..., 284
How Decorators Differ from Regular Functions........ 288
Understanding Recursioncccreeneereneenreenneeens 289
Generator POWer ... 290
LEGB RUIE ..o 292
ShadOWINgccocuevieeiiiciiciiciciceee e 293
Avoid ShadoWIngcouvieiiciiiciiiiiiiecne 294
Shadowing Example and Resolutionccccoccuvicnaes 295
QUESTIONS evevivvvvieiciricecetaeeees et nene 297
25: MAtLiX .eeeeeeenenneeeeeeeeeiininienssnnnnnnnnneeeeeeeeees 299
Creating a Matrix Using a Nested List........ccocoeurvennen. 301
Adding Matrices Together ..., 301
SUDLIACHON cacieeeeiet et 302
QUESHIONS vttt ettt 303
26: LINtErS w.uuviiiiiiiiiiiiiiiiiieeeeenenneennennnesseenenee. 305
Who Decidesr....viiiicieiiicciciiicceseeeeeenes 305
Style Documentation ... 305
Popular LINtErsccuviiiiiiiiiiiiciiciicccccces 306
PYHNL oot 309
AUtOPEP8 LINLEL ..eviiiiiciieciiciciececceee e 310
Format a Python File......ccccccviiiinniiiiiicins 311
Black LINtEr c..ooviieciciiiicicicirccciciccceceeeenes 312
QUESTIONS evvvviiitiriticeeaeaeee ettt bbb bbb nene 313

27: Geany IDEcccccevviivinnnnninnnnnnneeeeeen, 315
Debugging with PDB.......ccccocoviiiiiniiiiicice 319

PYTHON UNLEASHED RASPBERRY PI

28:

29:
30:

31:

32:

33:

34
35:

Virtual Environments.......coevevvecrrecirencsenieennecnneenen. 322
Geany PIuginscceverienieicinieecce e 323
MAKETILE e 234
Enviro Switching..........cccceevviiiiiininnnnnnnnes 325
Your Project's Best Friend.......oceeveneivievenenenienennes 326
Tips for Using requiremMents.tXt .. eereerreeernrereereirereenees 327
PIPENV oot 328
Environmental Vatiablecccocenieniccncnicnninnenens 329
FOIAELS .. eaeies 330
Welcome to the Magnificent virtualenvwrapper 331
Commands Available..........cccooeuviiiiiiniiniiniinicenee 333
Geany Virtual Environment Switchingcccceeue. 333
sys Moduleccceeiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnn. 341

abc Module.....cccoviiiiiiiiiiiiiiiiiinnninnnnnnnnnaa. 345
Real-World Scenatios........cocveeucieiniicrcinininiccsniicenes 348
MEtaCIASSES .. 349
What Are Decorators Really Doing?ccocccuvecuneacnnee. 350
Common Pitfalls with ABCS....c..cccvveeurnivniericricnnnes 352
QUESTIONS ettt ettt et ee 352
datetime Moduleccccuuuuuunrnnnennneinennnnn. 353
Time Zone Handling with zoneinfoccccccveeureennee. 355
Comparing Dates and TImescccoeeuveveuvenceeencceniennenns 355
QUESTIONS ettt ettt et ee 356
RPi GraphicCsccceeviiiiiiiivisnnnnnnnennneeeeen. 357
Tick-Tock It’s @ ClocK.....ccviueuriciricrricirecnicrecreene 359
Organise with Framesccooeuvcivccirncnncenecneeene 365
Framing Menus......ccocvviviicnininiiiciccncenes 367
QUESTIONS ettt ettt benene 368
PyGameccoovviiiiiiiiiiiiiiiiiiiiieieenennnnnnnnnnn. 369
SELUP ettt 370
Paddle Operation ... 372
Catch a Falling Star and Scoringcccccvvevinicinicnnenns 373
SOUNA ... 377
Event Handling and Program Loopccccccoveeeuvereueennee. 378
Optimising Performance........oeeurecurercureneeeeneenneennenes 379
PilloW ..cuuuueiiiiiiiiniiiiiiiiiiiniicinneeennnineee 381
NUumPy ccoiiirriiiiiiiiririiirreeene, 387
Values as a Variable Name.......cccoocuvvcivncenccnicnneenne. 391
Indexing and Slicing NumPy Arrays........ccccocecveivennees 392
Broadcasting........ccoccviciniiiniiniicics 393
Append, Delete, and Insertccccocuvevivnininiciiicnne, 395
Copying Arrays in NUumPy c.c..cccovceivcinncneenecneeeaes 396

Raspberry Pi PYTHON Novice to Ninja

Array Properties in NumPy.......ccccccovvinincincinnn. 398
Common Dot Options for NumPy Arrays 399
Exploring NumPy Data Types (dtypes)ccccoeuvvrunee 401
Why is this all so Important?.........cceeviviiviincicnnn. 405
QUESHIONS vttt 406
36: Pandasccceeiiiiiiiiiiiiiiiiiiinieiennnnnnnn, 407
Creating a Pandas Sefies.......cococvivivniiniciicinicinns 408
DataFrames from Different Types of Data.................. 409
All Togethetr NOWcueviueiieiicirereeieree e 412
Data Cleaningccveueereueeieeeniecmniernicseenseeeeeeenseens 414
Chained Assignment in Pandas........cccccoecevecinicinicienee 416
Essential Pandas Functionality in Action........cccceunee. 417
Exploring Pandas Dot Methods..........cccccoviviiviininen 420
Wrapping Up .o 422
DataFrame-NumPy Array Structure Differences........ 423
Data Manipulation Togetherccccveevirenieenicnnenee 424
Moving Data Between Pandas and NumPy.................. 425
Key DIfferences. ..o 425
When to Use Each.....c.coccciiiinniiiiniiiccnnes 426
Exercise: Numpy and Pandas........cccccvvinivininienn. 427
37: Matplotlib Visualscccceeevvrrrrvrnnnnnnnnnnnnn. 429
Geographical Representationscccecevicvvicivecinenes 436
38: Dunder Methodsuueeeeeiecnnnnneennnnnnes 439
Practical Use....c.occuicivicicicicccnccceeceeeeeeeeees 441
Why Use Dunder Methods Instead of List.....c.coc...... 442
Operator Overloading: ..., 443
Custom CompariSONS........cueuveuriirriiniisiieeeisiesinns 444
Callable ODbJECtS....uuumiueuicrricirieirieeeieieeseeseeseesseeenneaes 442
Dunder Methods for Containers.........ocveeueereeeereeeneeees 445
39: APIS ccuuuuiiiiiiiiiiiiiiiicicceeeenenneeeeeesna, 447
OpenWeatherMap Step-by-Stepocvveieiciiinieicnnn. 451
How Many API keys Needed?.......cccviviiiniivivininnn. 455
QUESHIONS vttt ettt 456
40: Writing Modules..........uuueeeeereeeeeeeeiiinnnnne. 457
What Functions Are in a Module?ccccvviiccinnnanes 463
41: Building Websites........ccccurrrereeeeeeiiiinnnnn. 461
Adding HTML templates........cccoeveuvneemnicmnicnnecneeennn. 463
Background Flask........ccccovuiiniincniiiiiiiee 465
42: DOCSEIINGS ceevvrieiiiiiiinnnrnnnnniiieeeeeeeeeeennnnnes 467
SPhINK e 468
Worked Example........cccovcuvieiiiciiinciinienicnicneneccnn, 469

PYTHON UNLEASHED RASPBERRY PI

43: GPIO and HATS ...covvueeieieeeencenceneenennees 473
The Hardware Shiftoocoovieiieiieiieiceceeeeeeeceeeeee 473
Common HAT Patterns...cccciceeeveeeeeeeeeeeieeeeeeeeenan 477

Vi i E\Y P21 S5 51 (SN 481

45: A Final Word ..ceeeeeeienrnienieieeceieneeennencencnes 487

| s e [U 485

IMPORTANT NOTE

Python programs follow a style guideline known as PEPS, which will be
covered later in this book. Although PEPS8 helps maintain consistency, it is
not required for a program to run correctly. One of the guidelines suggests
including two blank lines between certain sections of code, but this will not
always be followed in the listings here. This is to reduce whitespace.

PROGRAMS AND QUESTIONS

There are over 250 programs in this book. I suggest that you type in as many
of these as you can, rather than loading them in from the files. Typing is the
best way to learn and get a feeling for the commands, syntax and flow of a
Python program. Learn how to correct and ensure your coding is correct and
works. Bear in mind that some program lines extend longer than the space
available across the width of the book. As such they will often ‘wrap-around’
onto the next line. That said the programs are available to download from
the website at:

HKEXXXXXXXXXXX

QUESTIONS AND EXERCISES

Most chapters, not all, contain questions at the end. These questions are
related to the text in the chapter just read. There are up to 15 questions. No
answers are provided in the book, they are there for you to answer or review
the contents of the chapter prior to answering. Exercises include answers,
but remember my solution may be different to yours, but as long as you get
the right result that’s it! You’ll also find more exercises on the downloads file.

10

Raspberry Pi PYTHON Novice to Ninja

00: Novice to Ninja

What does novice and ninja mean regarding learning to program Python on
the Raspberry Pi? There are many books for programmers who are starting
their Python experience. But they cover the basics and don’t actually get
under the ‘hood’ and into the detail. They leave you in the hallway, and don't
show the rest of the house. Within these pages I seek to correct that and take
you to those places beyond the hallway, providing a higher level of
knowledge and expertise to transform you from a complete beginner (or
intermediate), who’s just learning the ropes, to a skilled and confident Python
coder. Merriam-Webster defines each word thus:

® A novice in computer terms can be defined as a beginner or
someone who has no previous experience in a particular field or
activity.

® On the other hand, ninja isn't typically defined in the same way in
dictionaries. In popular usage, it's often used to desctibe someone
who has achieved a high level of skill or expertise. An expert, maybe
someone to be feared?

You may not be a novice in use of the Raspberry Pi, and may have some
programming knowledge, but this tome will just accelerate your learning.
Being a ‘Python ninja’ doesn't mean you’ve mastered every single aspect of
the language, after all, there’s always more to learn. Instead, it means you’ve
reached a point where you’re comfortable and efficient with the language,
can solve problems creatively, and write clean, effective code. You know how
to handle different challenges, think like a programmer, and confidently
create your own projects or collaborate with others.

Programs
There are a lot of programs in this book. You can download the source from
the authors website .

11

PYTHON UNLEASHED RASPBERRY PI NOVICE TO NINJA

They are there for your convenience. andl would strongly suggest that you
type these programs in yourself. Unless you do you won't start to
understand how a Python program goes together. How it is structured and
what goes where as well as why? Most of demo programs are not that long,
so it shouldn’t be overly difficult. As you progress through the book then
they will become much longer, so you could delve into the download at that
point.

Typing is another key skill. If you can’t type, to whatever degree, in today's
world then things become long-winded. It is the biggest skill you can master
and is starting to become part of the school curriculum here.

I’m always pleased to hear from readers, please feel free to contact me at:

feedback@brucesmith.info

Use the Website Please

If you didn’t buy this through The Coding Press website, I'd be grateful if
you consider purchasing any more of my books from there. You will find a

larger choice of book formats, and help support me directly as a creative. |

am one of a few independent publishers and certainly the only one writing

seriously about the Raspberry Pi.

This means I can fully reap the benefits of my efforts in writing and
publishing. Supporting creators directly allows us to continue producing
more great content. People often think of the cost of the final project but
not the six plus months or so it takes to go from first word to finish article!

Raspberry Pi Versions

The contents of this book have been tested on the Raspberry Pi 3, 4, 400
and 5, 500 and any future Pi releases running Python 3. There are some
differences in the application here and there, but it is remarkably consistent
across all these versions. Where differences occur, and these relate mainly to
implementation issues, then I have noted this and provided the relevant
information for each model. In general, this book should work for any
Raspberry Pi that can run Python 3. Below is a guide to how Python 3 reacts
to being run on various Raspberry Pi models.

Raspberry Pi 1 (2012): Python 3 can run on this model, but due to its
limited processing power and memory (512 MB RAM), it may not perform
well for more complex programs, such as graphics and use of high intensity
modules such as NumPy.

Raspberry Pi 2 (2015): Python 3 runs smoothly on this Raspberry Pi. It
features more processing grunt (Quad-core 900 MHz CPU) and 1 GB of
RAM, allowing for better performance with Python applications.

Raspberry Pi 3 (2016): Python 3 runs very well on the Raspberry Pi 3,
12

which has a Quad-core 1.2 GHz CPU and 1 GB RAM, making it suitable for
more demanding Python applications, including GUI-based ones.

Raspberry Pi 3B+ (2018): Python 3 runs smoothly on this model, which
has improved performance over the Pi 3 supporting a 1.4 GHz CPU.

Raspberry Pi 4 (2019): Python 3 comes into its own on the Pi 4. This model
offers 8 GB of RAM, making it ideal for larger Python programs, and can
handle graphics with ease.

Raspberry Pi 400 (2020): Python 3 works well on the 400. This model is a
keyboard-integrated Raspberry Pi 4 with a 1.8 GHz CPU. It is effectively a 4
inside a keyboard!

Raspberry Pi 5/500 (2024) Python 3 is impressive on the 5. This model
offers up to 8 GB of RAM, making it ideal for memory intensive programs.

Raspberry Pi Zero and Zero W (2015 and 2017): Python 3 runs on the
Raspberry Pi Zero, but given the limited processing power (single-core 1
GHz CPU) and RAM (512 MB), performance may be slow.

Raspberry Pi Zero 2 W (2021): Python 3 runs on this model. It has
improved performance over the original Zero with a Quad-core CPU and
512 MB RAM, making it more capable for Python tasks.

Raspberry Pi Pico: This is a different type of device compared to the
standard Raspberry Pi models. It is a microcontroller, not a single-board
computet, so it doesn't run a full operating system like Raspberry Pi OS.
Instead, it runs programs directly on the hardware but uses a derivative of
Python called MicroPython. This is discussed in Chapter 45.

Operating Systems: All Raspberry Pi versions running Raspberry Pi OS
(formerly Raspbian and updated to Bookworm from Raspberry Pi 5), which

13

PYTHON UNLEASHED RASPBERRY PI

come pre-installed with Python 3, will support Python 3 out of the box.
Raspberry Pi OS maintains support for Python 3.x.

Python Types

Technically, there is only one Python programming language, but there are
multiple implementations of Python that cater to different needs and
environments. The most common Python implementations are:

Python: The standard implementation of Python edition and the one we are

learning herein.

CPython: The reference implementation of Python, written in the C
programming language. CPython = Python (the language) + C-based
implementation.

Jython: Python implementation written in Java. Useful when you need to
integrate Python with Java programs or Java-based frameworks.

PyPy: A Python implementation focused on speed, written in RPython (a
restricted subset of Python). PyPy is discussed in Chapter 44.

IronPython: A Python implementation targeting the NET framework and
Mono (cross-platform implementation of .NET.)

MicroPython: A lean and efficient Python implementation designed to run
on microcontrollers and small embedded systems.

Stackless Python: A Python implementation based on CPython but with
added support for microthreads.

Brython: A Python implementation that runs entirely in the browser,
converting Python code into JavaScript.

14

Raspberry Pi PYTHON Novice to Ninja

01: Hello

Python, alongside JavaScript and Java, is one of the most widely used
programming languages in the wotld. Some might even say it's the most
popular and significant, especially in the business world where it's the go-to
software. If you're aiming to become a commercial programmer and haven't
yet explored Python, you might find fewer doors open—it’s that essential.

As a taster, look at these famous organisations and their uses of Python:

YouTube: the world’s largest video-sharing platform, extensively uses
Python for back-end services, including video sharing, website operation, and
system administration. Python is known for being simple and easy to
maintain, making it ideal for a platform like YouTube, which requires
handling massive amounts of data and user interactions efficiently. Its strong
libraries for web development, and support for data handling allow YouTube
engineers to scale the platform easily.

Instagram: one of the most popular social media platforms, relies heavily
on Python and its modules, for handling millions of active users and
managing its back-end services. Instagram chose Python for its simplicity and
ability to help developers write clean, maintainable code. It also helps
Instagram scale its infrastructure efficiently. Python’s scalability and speed in
development cycles allowed Instagram to keep up with its explosive growth
without compromising performance.

Spotify: the popular music streaming service uses Python for data analysis,
back-end services, and machine learning to provide personalised
recommendations. Python excels at handling large amounts of data, which
Spotify needs for features like personalised music recommendations and user
behaviour analysis. Its data science libraries for analytic and machine learning
tasks. Additionally, Python’s asynchronous framework capabilities, like
Tornado and asyncio, enable Spotify to handle multiple concurrent
connections (such as streaming requests) efficiently.

15

PYTHON UNLEASHED RASPBERRY PI

Reddit: is one of the largest online communities, is primarily written in
Python. It uses Python for its back-end to manage user submissions,
interactions, and content. Reddit originally started with Lisp but migrated to
Python for its simplicity and wide range of libraries. Python allows Reddit to
scale easily, handle millions of daily interactions, and manage a large amount
of content without sactificing performance. Python's versatility and Reddit's
use of frameworks enable it to support its massive user base while remaining
flexible for future growth. Reddit's decision to use Python also makes it
easier to maintain and add new features over time.

Google: has used Python since its eatly days, and it plays a significant role in
various parts of Google’s infrastructure, including search algorithms, system
management tools, and back-end services. Google values Python for its
simplicity, speed of development, and readability. These attributes allow
developers to write and maintain code quicker, which is crucial in a large-
scale environment like Google. Python's flexibility also allows it to be used in
everything from system administration to machine learning. For example,
Google’s internal systems (like parts of Google Search) and tools like
YouTube Data API rely on Python. In fact, Guido van Rossum, the creator
of Python, worked at Google for several years, and Google actively supports
Python’s development.

Netflix: utilises Python for content delivery, data analytic, and automation,
playing a critical role in its recommendation algorithms and internal systems.
Netflix uses Python for data streaming and analysis to track user preferences
and optimise content recommendations. Python’s powerful libraries, such as
NumPy, Pandas, and TensorFlow. Additionally, Python helps Netflix
automate content delivery and infrastructure management, making their
systems more efficient and scalable.

NASA uses Python in various scientific computing and space research
applications, including data analysis and simulations. Python’s extensive
scientific libraries (like SciPy and NumPy) and its ease of integration with
other technologies make it ideal for complex scientific tasks. Python is widely
used in scientific research because of its readability and vast array of
scientific libraries. Python’s ease of integration with other languages (such as
C or Fortran for performance-critical code) also makes it an ideal choice for
NASA, where various specialised tools and systems need to work together
seamlessly.

Uber: uses Python for back-end services and data science tasks, helping
manage its large-scale ride-sharing operations. Python’s ease of use and
ability to handle large-scale, real-time data processing makes it a natural fit
for Uber’s, fast-paced environment. Uber processes millions of ride requests,
driver updates, and trip calculations in real-time, and Python’s capabilities
help manage these concurrent processes efficiently. Python also plays a

16

Raspberry Pi PYTHON Novice to Ninja

critical role in Uber’s data science efforts, where it’s used for calculating
estimated time of arrival (ETA), optimising routes, and pricing algorithms.

Pi Space

No wonder, then, that Python has found a cosy spot on the Raspberry Pi; it
comes bundled with your Raspberry Pi OS installation at no extra charge!

So, what makes Python so special? It's known as a high-level language, which
means it’s designed with us humans in mind—easy to read and write. High-
level languages are user-friendly and more abstract compared to low-level
languages. Programmers love them because the code is easy to understand
and maintain. Fun fact: another high-level language, C, was used to create
Python itself, which is why Python’s official name is C Python.

And no, the name has nothing to do with snakes. Python is named after a
cult 70s British comedy show, Monty Python's Flying Circus. Remember John
Cleese's ‘Ministry of Silly Walks’? Classic! (If you haven’t seen it, give it a
search on YouTube.) There are more nods to the show sprinkled throughout
the language.

At first glance, Python code might look a bit intimidating, Don’t let that fool
you. Despite its appearance, it's all about readability. Python emphasises
'structured programming,' nudging you to write clean and tidy code. It’s like
the language itself is helping you craft perfect programs. Structure is key in
every aspect of life, so why should a programming language be any different?

One of Python's biggest charms is the availability of ready-made building
blocks for writing programs, kind of like assembling a house from bricks.
Think of these bricks as the building blocks of the language. In Python
terms, they’re called libraries and modules. They do exactly what they say
on the tin—libraries of code with specific functions, and modules that
provide exactly what you need.

The best part? You don’t need to create each step from scratch. You simply
pick the blocks you need and snap them together. Python’s popularity
ensures there are plenty of these resources available, all designed to make
your coding life easier.

Python’s syntax is simple and readable, making it a breeze for beginners. The
way Python uses line indentation to define code blocks makes it easy to
spot different parts of a program at a glance. Plus, Python allows you to
execute commands and segments of code ‘on the fly’ thus allowing you see
results immediately when typing commands at the prompt. You can almost
test your code on the fly.

And let’s not forget about the massive ‘standard library’ that comes with
Python—a treasure trove of pre-written code. You don't have to worry much

17

PYTHON UNLEASHED RASPBERRY PI

about getting access to these tools because the standardised interface
between them makes it super easy.

The standard library itself is ever expanding, or added to in the case of
Bookworm on the Raspberry Pi 5. Modules such as NumPy that have
normally had to be installed, is now part of the library, so well worth
checking if its installed first.

This not only saves you time but also keeps your programs lightweight by
only using what you need. Python's cross-platform compatibility means
your programs can run smoothly on various operating systems like Windows,
macOS§, and Linux. Write it once, use it many times.

So, as we move forward, the code we write on the Raspberry Pi will be, for
the most part, transferable to other environments. How great is that?

Python Uses

On the first page of this chapter, I outlined just some of the large multi-
nationals who make use of Python everyday, indeed you could say it
underpins a large chunk of their business functionality.

Python plays a pivotal role in the educational landscape of the Raspberry Pi,
offering versatility beyond just coding for learning, Some of the remarkable
applications of Python on the Raspberry Pi include:

Home Automation: Python is a go-to for automating and controlling smart
home devices, enabling users to script interactions with sensors, cameras,
lights, and more.

Making: With an extensive array of add-on like hats, robots, displays, and
weather monitors, Python's libraries control these attachments seamlessly.

Web Development: Python serves as a capable tool for crafting web
applications, making it ideal for web-based projects on the Raspberry Pi.

Game Development: Crafting simple games using Python and libraries like
PyGame on the Raspberry Pi provides an enjoyable introduction to
programming and game development.

IoT (Internet of Things): Python finds its niche in IoT projects,
connecting sensors, actuators, and other IoT devices to the Raspberry Pi,
facilitating communication with cloud services.

Data Science and Analytics: Many of the Python libraries support data
science, machine learning, and analytics on the Raspberry Pi, empowering
users to analyse data and run machine learning models.

Robotics: Python's prowess extends to programming robots and robotic

18

Raspberry Pi PYTHON Novice to Ninja

systems on the Raspberry Pi, with add-on modules like 'GPIO Zeto'
simplifying hardware control.

Network Programming: Python's networking capabilities make it apt for
projects involving device communication over a network, such as building a
networked media centre or a file servet.

Security and Penetration Testing: Python is an asset for security-related
tasks, offering tools and libraries for penetration testing and network security
on the Raspberry Pi.

Python on the Raspberry Pi is not just a programming language; it's a
gateway to a multitude of exciting possibilities across various domains. The
applications atre endless.

Home Help

I personally use Python for a lot of things at home. It’s so easy to use.
Anything that involves, sorting, figures, text etc. For example, I use it for
pulling together all my account data for the end of year tax return.

For this book, I typeset it using an application called Affinity Publisher. 1
created a program that extracts all the programs in the text and then test each
one of them. Any errors are logged and changes can be made. This would
otherwise be a time consuming copy and paste process.

It’s up to you to come up with the ideas...

Learning

So, how do you go about learning Python? Well if you have this book you’re
well on your way. Given that fact there are some things to help:

Set Clear Goals

Decide why you want to learn Python: Do you want to use it for web
development, data analysis, automation, or game development? Or do you
just want to learn? Knowing your end goal will help guide your learning
path.

Small Steps. For example, aim to write a small Python script within the first
week, then move to more complex projects over time.

Get the Basics Right

Understand fundamental programming concepts. It’s important, especially
for Python. Keep an open mind and ensure you understand one chapter
before jumping to the next one. Answer any questions and try a
programming example. Get though correct. Then move on. Take existing
programs and rework them for something you need.

19

PYTHON UNLEASHED RASPBERRY PI

Modity existing code: Try tweaking open-source code to see how things
work. It helps you understand how small changes affect the program.

Practice, Practice, Practice
Consistent coding is the key. Even 20-30 minutes a day will build your skills
faster than cramming once a week.

Stay Curious

Be open to learning new things as Python is vast and versatile. Try solving
problems. Get online and check out the Python communities and forums.
Keep in touch with the Raspberry Pi Python community.

Python 32-bit or 64-bit?

Python will run on either version of the ARM microprocessor. This is due to
something called the Python Virtual Machine, which we’ll look at later. So
you are covered either way. There are some speed advantages with using A64
especially dealing with large sets of data.

20

Raspberry Pi PYTHON Novice to Ninja

02: Python Interactive

Open the Terminal window (that’s the black box in the top left of your
screen with >_" inside it). Once you’ve got that open, type:

python3

And press the <Enter> key.

The Python Interpreter interactive command line will materialise, and include
details such as the version of Python in use. You should see a prompt that
looks like this:

>>>
This confirms that you’re in the right spot. Just to be sure you’re not mixing
it up, the standard Terminal prompt is >_". Similar, but different enough to

keep you on your toes! Note that the standard Terminal prompt will
normally include details of your log-in such as:

pi@raspberrypi:~$
or similar

Now that you’re in the Python Interactive Shell (no need to abbreviate
here), youre ready to type in and execute Python code on the fly. Go ahead
and type:

print ("G’day mate")
Then press <Enter>. The code will run immediately, and the output will

pop up on the line below. (Any guesses on what it might be?) I’'m not
Australian but living down under makes "G’day mate" a common term!

21

PYTHON UNLEASHED RASPBERRY PI

While the Python command line is super handy for quick tests and playing
around with code, there’s an even better way to work with Python as we shall
see shortly.

To exit the interactive shell, just type:

exit ()

at the >>> prompt, and hit the <Enter> key again.

You’ll be whisked back to the Command Line of the Terminal, still in the
same window.

Checking In

Some Raspberry Pi setups come with two versions of Python installed. On
my Raspberry Pi 4B, when I typed:

python --version

(Note: That’s two hyphens.)

It returned:

Python 2.7.2

However, when I typed:

python3 --version

It produced:

Python 3.7.3

Depending on your Raspberry Pi, you might see the same version for both
commands, and it is probably different from mine. Python is constantly
being updated, so you may have a newer version. Using python3 ensures that
version 3.x.x—the latest version on your Raspberry Pi—is used.

For those running the Bookworm version of the OS, you might only have
one version of Python installed. Python 3.

This book focuses on Python version 3 and above. So, if you happen to have
multiple versions installed, just remember to use Python 3, and I’ll show you
how to make sutre of that shortly.

To ensure you have the latest version of Python, at the Terminal prompt
type:
sudo apt update

22

Raspberry Pi PYTHON Novice to Ninja

and press <Enter>. Let everything update, and if it asks you anything, just
reply with Y.

When the cursor returns, type:

sudo apt full-upgrade

This command updates all the software ‘packages’ on your system, making
sure they’re the latest versions available for your OS, including those all-
important Python packages. (You can check for any changes afterwards using
the “--version’ command.) Note that version numbers after 3.x can change
quickly.

sudo apt install python3

Would ensure that Python3 was installed.

Don’t worry if you don’t have the absolute latest version of Python. Like I
mentioned eatlier, it’s horses for courses. The version you have is almost
certainly the right one for your version of the Raspberry Pi OS. Older
versions of the Pi often run older versions of Python—makes sense, right?

Equally, as you upgrade your installation as the Raspberry Pi often suggest
you do, you may well get an update on the version of Python you’re using.

IDE

An Integrated Development Environment—what we in programming
speak call an IDE—is pure bliss, like the best thing since apple pie and
custard. So, let's get set up for some coding comfort. I recommend creating a
directory in your Home folder. Maybe give it a name like 'PYTHON'. The
name doesn’t really matter, but something specific will help keep your coding
projects organised. If you’ve downloaded the program files from my website,
pop them into this folder.

Python programs are simply text files, a bunch of statements that, when
combined just right, perform tasks. We group these statements into sets, each
set handling a specific job. Bundle them together, and bingo—you’ve got a
program.

The IDE is the hero of our coding adventure. Think of it as a magical space
where you can create, run, and fix your programs, all within one window:.

For this journey, our IDE of choice is “Thonny’, which is just perfect for
beginners. You can find it under the Raspberry menu, nestled in the
Programming drop-down menu. Once you open it, a screen like that shown
in Figure 2a greet you.

23

PYTHON UNLEASHED RASPBERRY PI

(Don’t worry if your screen looks a bit different. Looks and layout can vary
slightly from version to version. I’ve put the numbers there for descriptive
purposes!)

Maximise the Thonny window to fill your screen if you like, or just keep it as
a normal floating window that you can resize as needed. The choice is yours.
Thonny’s interface is all about simplicity, designed to keep things smooth and
easy as you write and run your Python code. While it might not be the top
pick for larger projects, it works perfectly for our purposes..

Let’s break down the Thonny window into three handy mini windows, each
with its own job. I’ve numbered them 1, 2, and 3 for easy reference:

1. Script Editor: This is where the magic happens. Write your Python
code here. It’s clean, it’s spacious, and it’s your coding canvas.

2. Shell: Just below the Script Editor is the Interactive Python Shell.
This is your playground for testing snippets of code on the fly, like
what we did in the command line earlier. We call this a REPL
(Read-Eval-Print Loop).

3. Assistant: On the right, this window gives you feedback about your
program when it runs. If there’s an error, it'll offer some hints on
what might need fixing,

You can resize any of these windows individually by dragging their borders.

Across the very top of the window (Figure 2b), you’ll find the menus as
drop-downs and icons. These ate laid out in a standard format, so they
should feel familiar. Most are intuitive, but a few might make you pause—no
worries, we’ll explore their purposes as we go along. If you hover your
pointer over the icons, a tool tip will pop up explaining what they do.

24

Raspberry Pi PYTHON Novice to Ninja

File Edit View Run Tools Help

*uy OB o=
<untitleds % Assistant %

=3 ©

Local Python 3 + /usr/bin/python3

Figure 2a. Typical Thonny start-up screen.

File Edit View Run Tools Help

*+4 O HEEEHOC O ™=

Figure 2b The Thonny Menn Bar.

Now, if you glance at the bottom right-hand side of the Thonny window,
you’ll see something like this:

/usr/bin/python3

H
|
Local Python 3 « /fusr/bin/python3

Figure 2¢. Python version being used by Thonny, and its location.

This shows the version of Python that Thonny is using, The address
following the version points to the location of the system version of Python.

Now, you're all set. The interface of Thonny. is a model of clarity,
uncluttered and honed to the essential elements for Python coding, Thonny's
user-friendly design boasts simplicity to ensure smooth writing and running
of your programs. While it might not be the go-to IDE for larger, more
complex programs, those are likely beyond the scope of this book.

25

PYTHON UNLEASHED RASPBERRY PI

Trying It Out

In Thonny, you can either use the existing program window (‘1” above) or
create a new one by clicking the green “+” icon. You can also go to "File" in
the menu bar and select ‘New’, or simply press <Ctrl+IN> (meaning press
the ‘Ctr]” and ‘N’ keys together). There are so many ways to start—ijust pick
one and get going! This action will open a new tab in the code area, and you
can switch between tabs by clicking the one you need.

Type the following Python code in the editor:

print ("Hello from Thonny!")

Save the file by clicking on ‘File’ and selecting ‘Save’, or by pressing
<Ctt]+8>. Choose a filename and location for your Python program, making
sure to give it a .py extension. For example, you could save it as: hello.py

You’ll see the name and directory of the file in the Thonny bar at the very
top of the window.

To run the program, click on the green ‘Run’ button in the toolbar, select
‘Run’ from the menu bar, or simply press the ‘F5” key as a shortcut. I've put a
small yellow sticker on my F5 key—it makes it easy to find . Well worth
doing. But any method is fine to run a program.

Thonny will execute the Python program, and you should see the output
"Hello from Thonny!" displayed in the Shell pane at the bottom of the
Thonny window.

If you look at the program window, you’ll notice that the small tab might say
<untitled>* at the top. This indicates that the file hasn’t been saved yet. If it
had the files name would be displayed here.

In case you're curious, Thonny draws its name from a fictional snake
character known as "Thonny the Python'—kinda like the character on the
front cover!

When writing Python programs, you can use either uppercase or lowercase
characters, but there are some general conventions for when to use each. As
we delve deeper into Python, we’ll uncover and define these conventions.

A Real Program

Open a new code editor window by pressing the big green cross. Click in the
Code Editor window and carefully enter the following:

26

Raspberry Pi PYTHON Novice to Ninja

#Filename: startl.py

import datetime

now = datetime.datetime.now ()
print (now)

If you’ve downloaded the programs then this isn’t included. You need to
type it in. Now, let’s bring this Python program to life. Hit the green 'Run’
button at the top of the window, and watch the result unfold in the 'Shell'
window. You should see the current date and time displayed down to six
decimal points of a second!

Take a peek at the Assistant window—ryou should find a reassuring message
confirming that your program is working perfectly, which is great considering
we just ran it successfully!

File Edit View Run Tools Help

o OH o=

start1.py % Assistant %
import datetime The code in start].py looks good
current datetime = datetime.datetime.now() Ifit is not working as it should, then
locale=datetime.datetime.now() ome general
5 print(locale) d s
Using?
Shell 3

>
2024-03-02 14:33:19.227435

>

Local Python 3 -+ /bin/python3

Fignre 2d. Date and Time in the Shell window.

You can also run this program in the Shell window of the IDE. Follow these
steps:

1. In the Code Editor, select all three lines of the program by clicking
and pressing <Ctrl-A>. Then, press <Ctrl-C> to copy.

2. Navigate to the Shell window;, click inside to select it, and press
<Ctrl-V> to paste the program there.

3. Finally, press <Enter> to run the program.

The same process applies when using the Python Interpreter in the Terminal
window. Select the Terminal window, choose 'Paste' from the ‘Edit’ menu,
and press <Enter> to execute the program.

27

PYTHON UNLEASHED RASPBERRY PI Raspberry Pi PYTHON Novice to Ninja

In both scenarios, every line you enter in either the Thonny Shell or the Thonny - home/bruce/Deskiop/Python/startl.py @ 5 v x
Python Interpreter in the Terminal window gets executed immediately. You’ll AL AT L
see an output whenever a line involves an action that displays a result. Y] (p] =] o™=
. Fles x sttt py ¢ | hellopy ¢ | mssistantx |
Things to Note: Here’ are a few things to note about the program above. This computer -1
/ home / bruce / Desktop 2 import datetime The code in start].py looks good
® The first line starts with a hash symbol, ‘4. A Python program i PWCD” Qe e st EEemnuligeridodlder
ignores anything after a line that starts with a hash symbol. This gl vl 5 print(locale) debug
allows you to put comments or notes in your programs. As you can 3 fig1-1 g ;
see, I use this to denote the filename of the program. Thus, the ;:S\W\jpy [shell = |
program here is called ‘start]l.py’. You’ll find it listed as such in the & start] py .
download programs. You can use as many comment lines as you 2624-03-02 14:33:19.227435
wish. Don't go overboard otherwise you lose the program within the 22
comments. And for the scope of this book, you don’t need to type
them in, if you are doing that.
® The program shows how we have used an imported item, by the 0 s s
name of datetime. This item is called a ‘module’ and contains the
routines we needed to retrieve and print the date and time. A module Figure 2¢. Additional Thonny windows. Files is nseful to keep open.

is a file that contains Python code—which you can use in your own
programs. For example, the datetime module helps you work with

dates and times." The Raspberry Pi File system

Understanding the file system on your Raspberry Pi is essential for any
programmet. The system files are in what's known as the 'root' directory,
which is the starting point of the operating system. If you want to explore
these files on Raspberry Pi OS, just open a Desktop window and use the File
Explorer to check out the root directoties.

® The last lines gather information required and then displays it, and
while you might now know the exact syntax of the rest of the
program means you can read it and understand what is happening.

Thonny Windows

Familiarising yourself with these system files helps you understand the

Thonny is flexible because it has several additional windows you can open structure of your Pi and makes customisation easier. Trust me, this
and display. You can explore these by selecting the “View’ menu at the top of knowledge will come in handy later, as we’ll see in Chapter 03.
the window. A good one to add is the ‘Files’ window. You can navigate to o
your programs and load them with a double click, as shown in Figure 2e File Edit View Sort Go Tools
below. Note how the ‘Files” window that the Python logo signifies Python) # s v
programs. # |Home Folder

3250 GB Volume tmp etc un dev home env

media var lost+found opt root usr
L1 L] L1
srv mnt shin lib bin sys
proc boot

Figure 2f. Folders in the root directory.

28 29

PYTHON UNLEASHED RASPBERRY PI

Don’t be shy about exploring these folders—just be careful not to delete or
change anything.

o/ (Root Directory): The root directory is the top-level directory in the
file system. Everything in the file system branches out from here.
Note in /root, it's the home directory for the root user, but you
should understand that regular users typically don't interact with it
unless using administrative privileges.

e /bin: This directory holds essential binary executables (commands)
necessary for system recovery and repair.

* /boot: Here, you’ll find the files needed for your Raspberry Pi to boot
up, including the bootloader, configuration files like ‘config.txt,” and
the kernel.

e /dev: Contains device files that represent physical and virtual devices
like disks, serial ports, and even random number generators.

e /etc: A treasute trove of system-wide configuration files and scripts.
If you need to tweak installed software, you’ll likely find its config files
here.

e /home: This is where user home directories live. Each user on the
system has their own sub-directory under /home.

e /lib and /1ib64: These directories store essential shared library files
that both the system and applications rely on.

e /media: If you plug in a USB drive or other removable media, it often
gets mounted here.

e /mnt: This is a common spot for temporarily mounting file systems.

e /opt: Here, you might find additional software packages that aren’t
P y g packag
part of the default installation.

e /proc: A virtual file system offering a wealth of information about
processes and system status.

e /run: This directory contains run-time data like process IDs and
socket files.

e /sbin: Home to system binaries (commands) typically used by the
system administrator.

e /srv: Intended for data served by the system, like web setvers.

e /sys: Another virtual file system, exposing kernel and device
information.

30

Raspberry Pi PYTHON Novice to Ninja

e /tmp: A temporary storage atea for files, often wiped clean when the
system reboots.

e /usr: This directory is packed with user-related programs, libraries,
documentation, and other files.

e /var: This is where you’ll find vatiable data files, like logs, spool files,
and temporary files that stick around even after a reboot.

In the /home directory, you'll find a folder with your username—your
personal space on the Pi. This is where all your folders and files live. If you
need, you can create additional users, each with their own separate
environment, allowing you to compartmentalise your Pi experience.

Head over to your /home/username directory to access all your data. Here,
you’ll come across folders like Desktop, Pictures, Documents,
Downloads, and more. This is the ideal place to organise your programming
world. Jumping back to Figure 2¢ you’ll remember that the Python version
we’re using is located in: ust/bin/.

Important Line Wraps

Many of the lines of Python code in the rest of these books are too long to
sit on one line. They therefore wrap into a second or more. 1f your type a
program in and there is an error when you run the program than look at the
error message and see if you can solve the issue for yourself. This may
simply be deleting the <Enter> you have inserted as part of the line wrap.

Code Listing In Book When Encountering an Error
Correct Listing: Error Message Example
x = "This is a very long line of Python code SyntaxError: invalid syntax

that runs correctly."
N Steps to Solve (Debug):

Listing With Errror (Accidental Wrap): - Check for incorrect line wrapping.

x = "This is a very long line of Python code <Enter> - Look for misplaced <Enter> characters.
that runs correctly." <-- Issue - Delete unintended line breaks.
Comment: l

Make sure not to press <Enter> mid-line!

Comment Line Wraps

Solution The Hash Wrap in Listings

Used for comments in programs.

Comment lines can warp in listings in books so
they appear on new line , and look like new line

Open program in the editor if not already open

(Discussed in Chapter 02) —
S entry.

Compare the listing in the book to your code.

Re-type the program as shown, avoiding line

. Remove comment or shorten program listings
breaks unless specified.

Check against program downloads from website.

Figure 2g. Investigating I ine Wraps

31

PYTHON UNLEASHED RASPBERRY PI

Questions

1.

32

What command do you use to start the Python interactive shell from the
Terminal window? And how do you exit the Python interactive shell and
return to the regular Terminal prompt?

Which command should you run to check the version of Python 3 on
your Raspberry Pi?

Why is it important to use the command ‘python3’ instead of ‘python’
when running Python code in this book?

What command updates the software packages, including Python, to the
latest version on your Raspberry Pi?

What is displayed in the bottom-right corner of the Thonny window;,
and why is it important?

What is the purpose of a Python module? Give an example of a module
used in the text.

Raspberry Pi PYTHON Novice to Ninja

03: A Matter of Style

Okay. You might find the opening section of this chapter requires some
head-scratching—especially the terminology. But give it a go, work through
the chapter, and then maybe come back here a second time to understand it
better. It may not seem like it now, but these concepts will become second
nature without you even noticing, Many people will shudder at me putting
this chapter here, and many will simply ignore it. But I just want you to know
how important it is. Feel free to skip it if you are confused, but do come
back to it when you have completed the first dozen or so chapters.

Object-Oriented Programming

OOP is a style of programming that uses, as its name suggests, "objects" to
construct programs. It allows you to model and manage the properties and
behaviour of program code as 'real-world' concepts, making them more
lifelike.' In your mind's eye, you can start to draw comparisons. Terms such
as inheritance and encapsulation may seem complex at first, but they
become clear with understanding and practice. They mean the same as they
do in real life. You inherit something. You encapsulate something. Other
terms, such as polymorphism and abstraction, may not be as intuitive but
shouldn’t impede understanding or, more importantly, your learning of
Python programming,

What’s important are the key building blocks of OOP. In Python, there are
four fundamental concepts to grasp:

® (Class

® Object

o Attributes
® Methods

33

PYTHON UNLEASHED RASPBERRY PI

The Block

Think of a class as a blueprint for a house. The blueprint outlines the
structure, layout, and characteristics of the house, such as the number of
bedrooms, the number of restrooms, and how many parking spaces there
are. Is there a pool? These are the attributes of the class. A class contains
attributes that define the characteristics of the object it creates.

From this blueprint, you can create multiple houses, each an instance of the
class. For example, you could use the blueprint to construct a dozen identical
houses on a street—a "block." However, not everyone wants an identical
house. Some families might modify theirs: one might forgo a pool, another
might convert the basement into an entertainment room, and so on.

To make these changes, you can adjust the attributes directly or use a
method to do so. For example, if you want to convert a room into an
entertainment room, you might create a method like convert_to_
entertainment_room() that updates the relevant attributes. This is an
example of encapsulation: bundling data (attributes) and methods (actions)
within the class, so the class manages its own state and behaviours.
Abstraction also plays a role here, as the method hides the complexity of
the conversion, exposing a simple action for the user to call.

In this analogy:
® A class is the blueprint of the house.

® Attributes are the features of the house (e.g., number of bedrooms,
presence of a pool).

® Methods are actions that can be performed by or on the house (e.g.,
unlocking a doot, turning on the lights).

There are three methods here: unlock_door(): A method to unlock the
front door; turn_on_lights(): A method to turn on the house's lights; and
convert_to_entertainment_room(): A method to re-purpose a room.

Changing a room’s purpose is called modifying the state of the object. If
done via a method like convert_to_entertainment_room(), it showcases how
classes manage changes to their internal attributes or state.

In this case, modifying an attribute or changing the state of an object would
be a way to describe the process of adapting the class to make a room into
an entertainment room. If you are creating a specific method like “convert_
to_entertainment _room()", it’s an example of encapsulation, where the logic
to make the change is handled within the class itself. Encapsulation refers to
bundling the data (attributes) and methods (actions) within a class, ensuring
that the object manages its own state and behaviours. Abstraction also plays

34

Raspberry Pi PYTHON Novice to Ninja

a role here because the method hides the complexity of how the room is
converted, only exposing a simple action for the user to call.

Think of a method as something the house can do or an action that can be
performed on the house. Just like living in a house involves doing certain
things, like unlocking the door, turning on the lights, or opening the garage,
methods are actions that can be performed by an object created from a class.

This house blueprint can be used to construct multiple houses with shared
features and design principles-but all based on the same plan, with
adjustments as needed. Attributes are the ingredients in this ‘House’ recipe.

Constructor and Attributes

When creating an object, its attributes are set up using a constructor, a
special method typically named __init__ in Python. The constructor
initialises the object's attributes with specific values. For example:

class House:
def init (self, bedrooms, restrooms, garage,
basement, pool):
self.bedrooms = bedrooms
self.restrooms = restrooms
self.garage = garage
self.basement = basement
self.pool = pool

This constructor initialises the object's attributes with values. A constructor
is a method.

HOUSE (Base Class)

Attributes:

o self.bedrooms = 4

o self.restrooms = 2

o self.garage = 2

o self.basement =1

o self.pool = True
Methods:
o open_garage()
o describe(self)

Figure 3a. The House Base Class blueprint.

35

PYTHON UNLEASHED RASPBERRY PI

Encapsulation ensures that these attributes are controlled and accessed only
through specific methods, hiding the internal data from external
modification. Each instance variable (e.g;, self.bedrooms) belongs to a
specific object, allowing each house (object) to have unique features.

Inheritance and Polymorphism

Inheritance allows us to extend the blueprint of a base class to create
specialised versions. For instance, we might create subclasses like
TownHouse, Bungalow, or Villa. These subclasses inherit attributes and
methods from the base House class but can also add new ones or override
existing ones. For example, a TownHouse class might inherit the bedrooms
and restrooms attributes but introduce a new number_of _floors attribute.
Inheritance allows us to reuse and extend the blueprint without rewriting
everything from scratch.

Polymorphism allows these subclasses to define methods with the same
name as those in the base class but with different behaviours. For instance, a
describe() method in the House class might provide a generic description of
a house, while the TownHouse class overrides it to include details like the
number of floors. This flexibility makes OOP wonderfully flexible, enabling
different classes to share a common interface while behaving differently.

® The class is the blueprint.

e Attributes are the features of the house.

® Methods are the actions the house can perform.

® Inheritance extends the blueprint for new types of houses.

® Polymorphism allows subclasses to implement shared methods in
their own way.

Class Instance

The diagram opposite (Figure 3b) builds on the previous one and aims to
provide a visual representation of how this works. We have the House Base
Class, which lists the attributes of the class inside the box. This serves as a
blueprint for all houses in a development. The base class house includes the
following attributes:

® Four bedrooms, two restrooms, double garage, basement and pool

Next to the base class diagram, we have a specific house that is an instance
created from this base class/blueprint. This individual house has the
following attributes:

36

Raspberry Pi PYTHON Novice to Ninja

® Four bedrooms, two restrooms, double garage, no basement, no
pool

This means it is based on the blueprint (the base class) but with altered
attributes, demonstrating how instances of a class can have their own unique
attribute values.

HOUSE (Base Class) HOUSE (Instance)
Attributes: Attributes:
o seltbedrooms =4 o selfbedrooms = 4
° self.restrooms = 2 ° self.restrooms = 2
o selfgarage =2 o self.garage =2
o self.basement =1
o self.basement = 0
o self.pool = True
o self.pool = False
Methods:
Methods:
o open_garage()
o describe(self) 2 open_garage()
° describe(self)

Figure 3b. Base class and an instance of a class.

As mentioned earlier, the attributes are defined using a special method called
a constructor, typically named __init _ in Python. The constructor is a
method that is automatically called when a new object of the class is created.
It allows attributes to be customised during object creation by accepting
parameters. For example:

class House:
def init (self, bedrooms, restrooms, garage,
basement, pool):
self.bedrooms = bedrooms
self.restrooms = restrooms
self.garage = garage
self.basement = basement
self.pool = pool

In this example, the constructor initialises the attributes of the house using
the values provided as arguments when the object is created. For example:

housel = House (4, 2, “double”, False, True)
house2 = House (3, 1, "single", True, False)

Here, housel and house2 atre two different instances of the House class,
each with their own unique attributes.

These attributes are known as instance variables because they are specific
to each instance (or object) of the House class. Each object has its own set
of these variables, meaning no two objects share attribute values unless
explicitly programmed to do so. This allows for the creation of multiple

37

PYTHON UNLEASHED RASPBERRY PI

houses with different attributes. For example, one house might have a pool
while another does not.

Derived Classes

Using House as a base class, we can create more specific types of houses like
Townhouses, Bungalows, or Villas. These classes are derived from the
original base class. They are still houses, but they differ in structure and
behaviour while sharing some of the same attributes and methods. These
derived classes can inherit the attributes and methods of the House class
while also introducing their own unique characteristics.

For example, we might create a TownHouse class as a derived class of
House. A townhouse shares many of the same attributes as a generic house
(e.g., bedrooms, restrooms, garage) but has additional or modified
characteristics, such as driveway_parking or end_of_row. These new
attributes reflect the specific features of a townhouse that aren’t present in
the base House class.

In some cases, the derived class may override attributes or methods from the
base class to better represent its specific type. For instance, while a generic
House might have a describe() method that provides a basic description of
the house, the TownHouse class could override this method to include details
like "end-of-row" status or "shared walls."

Key Concepts
® Inheritance: Derived classes reuse attributes and methods from the
base class, avoiding code duplication.

® Opverriding: Derived classes can redefine methods or attributes to
customise their behaviour.

e Extensibility: The base class (House) provides a foundation, while
derived classes (TownHouse, Bungalow, etc.) add or modify features
to create specific types of houses.

Methods in Derived Classes

Derived classes can override methods from the base class or define their own
unique methods. For example, a TownHouse class might override the
describe() method to exclude information about a pool (since townhouses
typically don’t have pools) and include details specific to townhouses, such as
their position in a row of houses. Here’s an example

class TownHouse (House) :
def describe (self) :
return f"This townhouse has {self.bedrooms}
bedrooms, {self.restrooms} restrooms, and is part of a
row of houses."

38

Raspberry Pi PYTHON Novice to Ninja

In this method, the placeholders ({self.bedrooms} and {self.restrooms})
are replaced with the values of the respective attributes. For instance, if self.
bedrooms is 3, the output will show "This townhouse has 3 bedrooms...".

This structure exemplifies the principles of OOP, where objects (houses)
have both data (attributes) and behaviour (methods) that model real-world
entities.

Methods in the House Class

In the House class, there are two example methods: open_garage() and
describe(). These methods define actions that a house (or an instance of the
House class) can perform:

® open_garage(self): This method simulates the action of opening
the garage. It might provide details about the garage's size or indicate
whether the house even has a garage.

e describe(self): This method returns a string that describes the
house, using its attributes, such as the number of bedrooms,
restrooms, garage size, presence of an entertainment room, and pool.

These methods enable the objects (instances of House) to perform actions
based on their attributes, reflecting the behaviour of real-world entities.

Polymorphism Example

Polymorphism allows objects of different derived classes to be treated as
instances of the base class. Even though each derived class implements its
own version of methods (like describe()), they can all be used through a
common interface. Here’s an example:

house = House (4, 2, "double", False, True)
townhouse = TownHouse (3, 2, "single")

print (house.describe())

Output: A house with 4 bedrooms, 2 restrooms, and a
double garage.

print (townhouse.describe ())

Output: This townhouse has 3 bedrooms, 2 restrooms,
and is part of a row of houses.

In this example:

® The describe() method behaves differently depending on the type of
object calling it (a House or a TownHouse), demonstrating
polymorphism in action.

® Both objects can use the describe() method through the shared

39

PYTHON UNLEASHED RASPBERRY PI

interface of the base class, but each provides behaviour specific to its
class.

Additional Examples: Classes Galore

To further understand inheritance and method customisation, let’s consider a
Vehicle base class. This class might have attributes like make, seats, model,
colour, and year. It could also have methods like power(), refuel(), drive(),
stop(), and reverse(). A derived class called ElectricVehicle could inherit
most of these attributes and methods but replace the refuel() method with
charge() to represent how electric vehicles operate.

Another Example: Shapes

Here’s an analogy using shapes to illustrate inheritance and customisation:

® Base Shape: A generic shape with common characteristics, such as
length and width. It might include a method to calculate the area
(length * width).

® Derived Shape (Rectangle): A rectangle is a specific kind of shape.
It inherits the attributes length and width from the base shape and
calculates the area using the base method.

® New Shape (Circle): A circle doesn’t have length and width; it has a
radius. While it may still use the concept of area, it overrides the

method to calculate the area using the formula for a circle (n *
radius™2

Here:

® Inheritance: Allows new shapes (e.g., Rectangle) to reuse and extend
features of the base class (Shape) without rewriting everything.

e Customisation: New shapes (e.g., Circle) can override or define
their own methods while remaining conceptually related to the base
class.

® Polymorphism: Objects of different derived classes (Rectangle,
Circle) can be treated uniformly as instances of the base class
(Shape), but each implements its own specific behaviour.

Programming with OOP

Here’s how you might typically construct a program to represent the OOP
concepts we've discussed. These code snippets might not make sense
immediately, but take your time to examine each one closely—you’ll see how
they fit together. The terminology used is intentionally simple and clear.

Example 1: The House Class

40

Raspberry Pi PYTHON Novice to Ninja

class House:
def init (self, bedrooms, bathrooms, has pool):
self.bedrooms = bedrooms # Attribute
self.bathrooms = bathrooms # Attribute
self.has pool = has pool # Attribute

def unlock door (self): # Method
print ("The door is unlocked.")

def turn on lights(self): # Method
print ("The lights are turned on.")

def fill pool(self): # Method
if self.has pool:
print ("The pool is being filled.")
else:
print ("This house doesn't have a pool.")

In this example:

Attributes like bedrooms, bathrooms, and has_pool describe the house’s
characteristics.

Methods like unlock_door(), turn_on_lights(), and fill_pool() describe
actions that can be performed by or on the house.

Example 2: Converting a Room to an Entertainment Room
We can add functionality to convert a room into an entertainment room:

class House:
def init (self, bedrooms, bathrooms, has pool,
rooms) :
self.bedrooms = bedrooms
self.bathrooms = bathrooms
self.has pool = has pool
self.rooms = rooms

def convert to entertainment room(self, room):
if room in self.rooms:
self.rooms[self.rooms.index (room)] =
'entertainment room'
print (f"The {room} has been converted into
an entertainment room.")
else:
print (f"There is no {room} to convert.")

Here, he convert_to_entertainment_room() method modifies the rooms list.

It checks if the specified room exists and, if so, updates it to "entertainment
n

room.

Example 3: Adding a Garage

class House:
def init (self, bedrooms, bathrooms, garage
size, has_garage): B
self.bedrooms = bedrooms
self.bathrooms = bathrooms

41

PYTHON UNLEASHED RASPBERRY PI

self.garage size = garage size

Number of cars the garage can hold
self.has garage = has garage

Boolean to indicate if house has a garage

def open garage (self) :
if self.has garage:
print (f"The garage door is opening... This
garage can fit {self.garage size} cars.")
else:
print ("This house does not have a garage.")

You can create an instance of the House class and call its methods:

my house = House (bedrooms=3, bathrooms=2, garage
size=2, has garage=True)
my house.open garage ()

Output:

The garage door is opening... This garage can fit 2
cars.

You can expand this by adding more methods, such as:

def close garage (self):
if self.has garage:
print ("The garage door is closing...")
else:
print ("This house does not have a garage.")

Combining Snippets into a Full Program

You may feel that this chapter is way to advanced to be at the front of the
book. It probably is. But OOP is essential to life on Python. Some of what
you have read will stick, and as I’ve said, and promise, these concepts will go
almost unnoticed by you and everything will fall into place as you continue
on. Re-read this chapter every few chapters of the book. More will stick.

These snippets of code can be combined to create a comprehensive
program. While we won’t combine them here, I encourage you to experiment
and build on these examples as you progress through the book. Keep
tripping back here until you can create the completed program. Then you’ll
fully understand OOP! I promise it will happen.

42

INDEX

__add__ 444, 448, 451

__call__ 449,450
_dict__ 326
_doc__ 469
__eq__ 449,451

__getitem__ 449, 450

init 37,38,42, 43, 67,114, 136, 146,
288, 353, 368, 369, 377, 378, 379, 392, 444,
445, 446, 448, 449, 450, 451, 468, 478
__iter__ 450

le 449

_len__ 450

_ e 449

_ main__ 202, 224, 237, 260, 285, 286, 287,
325, 347, 348, 369, 381, 382, 447, 458, 467,
471,473

__name___ 202, 224, 237, 260, 285, 2806,
287,325, 347, 348, 369, 381, 382, 447, 458,
467,471,473

__new__ 353

__repr__ 288, 444, 445, 446, 447, 448, 450
__setitem__ 449, 450

str 444 445,446, 447, 450, 451
__version___ 392

_build 479

_distutils_hack 392

_files 237

_static 479

_templates 479

A

abc 288, 350, 351, 352, 354, 355, 356,
357

abes 352, 353, 356

abs 268, 390

absolute 25, 268, 425

abspath 479

abstract 19, 288, 304, 350, 351, 352, 356, 357
abstractclassmethod 350, 352

abstraction 35, 36, 447

abstractmethod 288, 350, 351, 352, 355
abstractproperty 350, 352

abstracts 54, 464

INDEX

acronym 291

act 37,57, 370, 452

activate 168, 169, 173, 228, 233, 326, 330,
331, 341, 343, 344, 456, 481

actuators 20

add 18, 20, 21, 30, 306, 38, 40, 48,
add_feature 441

add_numbers 49, 56, 75, 314, 315, 317
add_subplot 440

addhandler 259

72,376, 381, 383, 400, 431, 448, 472
addition 14,49, 100, 101, 114, 116, 126,
151, 195, 221, 262, 266, 267, 305, 306, 307,
308, 320, 354, 360, 393, 399, 410, 448, 451,
477

additions 116, 336

address 27, 58, 60, 156, 251, 260, 336, 420,
448, 471, 472,473

adds 49, 56, 75, 100, 109, 149, 163, 195,
198, 234, 266, 284, 285, 366, 373, 393, 399,
400, 4006, 418, 431, 442

admin 228, 470

administrator 32

ads 328

algebra 49, 64, 304, 392, 431, 432
algorithm 151, 351, 355

algorithms 18,19, 151, 274

align 370,473

alpha 408, 437

alphanumeric 243, 248

analogous 47

analogue 270

analogy 36, 44, 45, 52, 53, 57, 145, 278
analytics 17, 18, 20

anchors 244, 245

api 18, 223, 224, 239, 452, 453, 454,
455, 4506, 457, 458, 459, 460, 461, 464, 465,
477

api_key 224, 454, 457, 459

api_keys 223,224

api_weather 457

apt 21, 24, 25,121,170, 171, 172, 173,
175, 313, 328, 335, 392, 4506, 474, 477
architecture 407, 462, 463

archive 200, 201, 202

archived 201, 312

archives201

archiving 201

arg 178, 347

args 706, 285, 286, 326

argument 406, 47, 66, 86, 130, 138, 178, 222,
281, 282, 283, 284, 280, 288, 296, 297, 315,
326, 361, 388, 414, 417, 421, 422, 433
arguments 45,40, 75,76, 77,211, 277,
281, 282, 284, 285, 287, 293, 346, 347, 349,
466

argv 339, 340, 347, 349

array 18, 20, 48, 109, 223, 305, 308, 393,
394,395, 396, 397, 398, 399, 400, 401, 402,
403, 404, 405, 4006, 408, 409, 410, 413, 4206,
428,429, 430, 431, 432, 443

arrayl 398, 399, 400

ascit 407

asctime 259

aspect_ratio 390

PYTHON UNLEASHED RASPBERRY PI

assembler 482

assembly 208

assets 384

astype 409, 419, 420

asynchronous 17

asyncio 17

attribute 36, 42, 43, 44, 114, 126, 136, 207,
287, 326, 346, 409, 450, 469, 476
attributeerror 126

auto 384,479

autodoc479, 480

autopep8 312, 313, 316, 319

autoremove 173

average 123, 215, 216, 217, 226, 414, 416,
419, 420, 421, 440, 456

axes 395, 396, 405, 435, 441

axes3d 440

axis 395, 396, 403, 404, 4006, 410, 424,
429, 433, 438, 440, 441

axs 443

B

backup 76, 201, 335, 461
bar3d 440, 441

bare 199, 255, 258, 323
base_url 457

bash 51,167,322
bashrc 335, 336

bem 465
becm2711 462
bdfi 310

bicubic 387

bin 27,32, 33,58, 62,169, 173, 227,
228,229, 275,327,330, 331, 334, 341, 343,
440, 441, 456, 479

binaries 32, 228

binary 32, 261, 274, 275

bit 19, 26, 28, 50, 52, 53, 58, 82, 92, 95,
104, 134, 181, 190, 205, 235, 262, 265, 273,
274,275,276, 327,333, 334, 338, 366, 370,
380, 392, 4006, 407, 457, 477, 482

bits 57,273, 274, 275, 276, 322

black 23,312,313, 317, 318, 319, 375,
376, 377, 378, 380, 383

blur 387

blurred_image 387

blurring386

bmp 386

bmw 113

bookworm 16, 24, 170

bool_ 407, 408

bool_array 408

boolean43, 69, 129, 223, 270, 272, 273, 274,
407, 408

booleans 129, 219, 220

boxplot 427, 438

boxplots 427

bpython 248

branches 32

branching 281

broadcom462

broader 67, 203, 311, 312

brython16

bubble 57

button_frame 371, 372,373

byte 78,79, 410

bytecode 52, 53, 54

bytes 78, 118, 207, 208, 408, 409, 410
bytes_ 408

bytes_array 408

C

calculate_ 286

calculate_area 476

calculate_sum 77, 286, 287, 297, 347
calculated 294, 295, 391, 395, 399, 430
calculated_result 295, 296

calculates 56, 70, 107, 226, 286, 287, 296,
297, 347, 396, 405, 420, 476

calculus 261, 264

call 25, 26, 36, 43, 44, 46, 47,49, 59, 66,
67,75, 115, 145, 197, 203, 218, 222, 280,
285, 286, 289, 290, 297, 325, 327, 357, 359,
374,382, 455, 471

cat 2406, 247

catalog 355, 356

catalogue 235

cdvirtualenv 337

ceil 265, 268, 269, 276

celsius 79, 457, 459

celsius_to_fahrenheit 79

cfg 62

chaos 190

char 120

char_count 120

chdir 238

chmod 206, 207, 209

chunk 20, 102, 156, 210

chunk_size 210

chunks 95, 210

class 35,36, 37, 38, 39, 40, 41, 42, 43, 44,
47,49, 55, 56, 67,77, 114, 136, 146, 148,
149, 150, 152, 255, 256, 278, 287, 288, 322,
350, 351, 352, 353, 354, 355, 356, 357, 358,
359, 361, 368, 377, 378, 379, 384, 444, 445,
4406, 447, 448, 449, 450, 451, 476, 478
class_ 353

class_dict 353

classify 391

classmethod 288

clock 270, 364, 365, 366, 375, 377, 378,
379, 383

close 60,129, 197, 203, 209, 211, 228,
363, 382, 384, 473, 474

close_garage 43

closed 51,179,203, 211

cloud 20,187,334

cls 287,288, 353

cmap 439

cmd_build 343

cmd_compile 343

cmd_execute 342, 343

cmyk 387

col 398, 422

collaborate 13

collection 48, 78, 87, 115, 120, 121, 123,

124,125,130, 133, 135, 172, 278, 305, 328,
397

collections 91,93, 94,117, 124, 128,
129,132, 137, 140, 149, 150, 152, 153

cols 403, 404

4,425,426, 427, 429, 430, 432, 433
column_means 429

column_sum 403, 404

combine 56, 70,71,72,92,103, 111, 140,
356, 359, 370, 470

combined 25, 43, 47, 356, 358, 451, 462
combined_list 103

combines 143, 312, 359

combining 70, 71,120, 133, 273, 278,
447

combo 366, 367

combobox 367

command_output 237

compare 73,98, 123,125, 128, 151, 268,
361, 391, 409, 447, 451

compartmentalise 33

compile243, 323, 327, 341, 342, 343
compiled 53, 56, 171

compiler 52,53, 322, 342

compiles 54, 243, 342

complex128 407, 408

complex256 407

complex64 407

complex_array 408

complexities 54

compressed_value 275, 276

compute 263, 276, 395, 396, 405, 427
con 289

concat_list 104

concatenate 68, 71,72, 112, 114, 133, 71,
72,104

concatenating 112, 230

concatenation 68, 70,71, 72, 104
concurrent 18, 19

concurrently 148

condition 81, 83, 85, 90, 91, 184, 255, 270,
288

conditional 101, 107, 184, 188, 271
conditionally 101

conditions 83, 85, 91, 101, 270, 271,
273, 459, 460

conf 478,479, 480, 481

config 32, 223, 224, 225, 363, 364, 3606, 479
config_file 224

conformance 316

conjunction 209

container 47, 48,49, 94, 136, 278
containers45, 63, 370, 449

contextlib 288

contextmanager 288

contexts 2064, 447

contextual 151

contiguous 305

convert 36, 42, 79, 106, 122, 124, 128, 130,
131,138, 152, 188, 191, 192, 219, 220, 221,
222,223,262, 360, 369, 387, 391, 396, 409,
419, 430, 435, 436, 437, 438, 439, 477
convert_ 36

convert_to_ 37
convert_to_enteratainmentroom 42

INDEX

convert_to_entertainmentroom 43
converted 36, 42, 54, 79, 138, 188, 193, 222,
396, 409, 415

converted_array 409

converter 221

converting 16, 53, 122, 123, 125, 130,
131, 132, 138, 396, 415, 419, 420, 426, 430
copytree 200, 201, 202

cos 269, 270, 369

cos_value 269

cost 50,53, 64,91

country 109, 110, 111, 112, 119, 212, 372,
373,457, 458, 459

country_code 454, 457, 458, 459
country_data 212

country_info 212

counts 106, 121, 135, 426

cpu 15,16, 462

cpython 16

create_line 368, 369

creator 18,310

creators 14

crop 380, 387, 391

cropped_image387

csv 213,214, 215, 216, 217, 218, 219,
221,222,223 225,226, 413, 414, 416, 417,
418, 419

csv_dict_reader 215

csv_file 221, 222

csv_file_ 218

csv_file_path 215, 218, 4106, 418
csv_reader 214, 218, 221

csv_to_json 221,222

csvfile 214,215,218

ctrl 27,28, 29,474

cube 304

current_datetime 359, 364, 365, 366
current_dict 237

current_path 205, 233

currently 50, 182, 232, 325, 334, 337, 342,
343 373

custom 59, 87, 88, 139, 191, 212, 232, 233,
255,274,288, 325, 338, 340, 342, 347, 348,
353, 374, 384, 387, 388, 389, 447, 448, 449,
450, 463, 468, 471, 473, 477

custom_bin 233

custom_module 348

custom_path 347

cwd 238
cx 369
cy 369
cyber 135
cycles 17
D

dashboard 453,470

dashboards 434

data_dict 415, 416, 418
data_from_dict416, 417

data_from_lists 416

data_lists 414, 415, 417

database 94, 130, 203, 223, 224, 225, 239,
259, 260, 360, 470

databases 221, 412

PYTHON UNLEASHED RASPBERRY PI

dataclass 288

dataframe 413, 414, 415, 416, 417, 418, 419,
420, 421, 422,423,424, 425, 426, 427, 428,
429, 430, 431, 432, 435, 436, 437, 438, 439,
443

dataframes 412, 414, 416, 417, 418, 419,
428, 430, 431

dataset 117,196, 216, 217, 419, 420, 428,
431,437, 443

datasets 18, 91, 123, 124, 125, 126, 216, 217,
277,290, 409, 425, 429, 431, 439, 442

date 29, 30, 49, 125, 169, 171, 205, 200,
245,322,358, 359, 360, 361, 364, 365, 366,
456, 459, 460, 471

date_string 358

dates 30, 48, 137, 140, 358, 359, 360, 361
datetime 28, 30, 48, 49, 205, 358, 359, 360,
361, 364, 365, 408, 456, 457

datetime64 408

datetime_array 408

datetime_object 359

dateutil 331

db_host 224

db_name 223

deactivate 168, 229, 234, 330, 337
deactivates 337

debug 181, 182, 183, 184, 186, 224, 225,
259, 325, 326, 375, 447, 461

debug_mode 119, 223, 224, 225
debugged 326

debugger 181, 183, 185, 324, 325, 326
debuggers181

debugging 21,53, 181, 182, 183, 184,
185, 255, 257, 258, 260, 284, 288, 310, 322,
323,324, 325, 326, 346, 349, 434, 445, 4406,
447, 455

dec 266

decode 79, 219, 220

decoding 220

decompress 201, 275, 276
decompressed 275

decompressed_num1 275, 276
decorator 284, 285, 286, 287, 288, 296, 297,
351, 352, 354

decorator_name 284, 351, 354
decorators 2717, 283, 284, 285, 287, 288,
350, 354, 355, 357

deep_copy 119, 158, 159, 161, 163, 164
deepcopy 119, 157, 158, 159, 161, 163, 165
deg 454

degree 14,316

del 65, 104, 105, 110, 111, 117

delay 43, 457, 458, 459, 460

delays 384

delimiter 68, 69, 213,214, 218

delimiters 213

delitem__ 450

deliver 355

deque 148, 149, 150, 151, 152, 153
deque_length 150, 151

deques 149, 151, 152

dequeue 148,149, 152, 153

derivative 16

destination 200, 202, 239

destination_dir 201, 202

destination_ file200

destination_folder 200

deviation 425, 426

df 419, 420, 422, 423, 424, 425, 4206,
427,428, 429, 430, 436, 437, 438, 439
df2 424

df_dropped 424

df_dropped_na 424

df_filled 424

df_from_csv 416,418

df_from_dict 416,417,418
df_from_lists 414,416,417, 418
df_missing 424

df_pivot 424

df_sorted 424

df _stacked 424

df_unstacked 424

dht22 225

dict 120,131, 132,142, 293, 353
dictwriter 213

dimensional 89, 305, 395, 397, 413, 431,
432

directory_list 236

directory_path 201, 236, 237
directory_structure 2306, 237
directory_to_zip 202
display_current_datetime 359
display_menu 192
display_person_details 447
display_weather_history 458

distract 293

distributed 440, 441

divide 97,241, 254, 256, 257, 394
division 183, 254, 257, 259, 262, 267, 305,
394, 410

division_result 262

docs 479, 480

docstring 288, 315, 469, 476, 480
docstrings311, 315, 469, 476, 477, 478, 480
doctest 478

doctype472

domain 251, 252

domains 21, 453

dpkg 168

dr 14

draw 35, 314, 368, 377, 380, 386, 387,
388, 389

draw_labels 442

drawing161, 369, 378, 383, 387, 389
drop 25,26, 59, 60, 61, 62, 66, 169, 343,
362, 366, 367, 421, 424, 426

drop_ 419

drop_duplicates 420

dropdown 367, 368, 372, 373
dropdown_label 367

dtype 403, 404, 405, 408, 409, 413
dtypes 406

dunder 444, 446, 447, 448, 449, 450
dunderl 444

duplicate 117, 118, 123, 124, 125, 132, 135,
155, 162, 200, 402, 419, 420, 421

dx 440

dy 440

E
echo 227,231,233, 336
ecosystem328

edge_enhance 387

editor 2,26, 27, 28,29, 214, 294, 318, 321,
322,328, 335, 342

editors 5

element_at_index_1 150

element_diff 307

element_sum 307

elif 79, 85, 192, 361

else 42,43, 58,59, 79, 82, 85,102, 162,
183, 184, 186, 187, 189, 191, 192, 199, 200,
204, 208, 224, 230, 242, 245, 246, 247, 252,
253,254, 258,267,273, 286, 289, 314, 317,
320, 322, 325, 331, 332, 348, 361, 370, 390,
467, 468, 469

email 189,248,251, 252

email_dict252

email_list 252

empty_directory 238, 239

encapsulate 35, 280, 287, 447
encapsulated 67

encapsulates 45, 67

encapsulating 67, 169

encapsulation 35, 36, 37, 44, 47, 55, 67,
114, 283

encode 79, 219, 220

encoding 214, 215, 218, 220, 237, 238
encryption 274

end_time 286

ended 149, 150

enqueue 148, 149, 152, 153

ensure 2,22 24,25 27 91, 117,121,122,
123,133,134, 152, 153, 164, 168, 170, 172,
173, 175, 192, 200, 202, 203, 212, 229, 234,
251, 259, 260, 281, 297, 308, 311, 318, 323,
335, 336, 352, 354, 356, 361, 383, 384, 391,
392,416,421, 423,435, 441, 453,471, 479,
481

enumerate 84,87, 88,92, 138, 139, 140
enumerated 88

env_name3306, 337

env_vars 238, 239

enviro 330, 332, 334, 336, 338, 340, 342,
344

environ 233, 238, 239, 333

environment 18, 19, 25, 33, 52, 57, 58, 59,
60, 61, 62,167,168, 169,170,171, 173, 175,
227,228,229, 231,232,233, 234, 235, 238,
239,282, 313, 314, 318, 320, 322, 324, 320,
327,330, 331, 332, 333, 334, 335, 336, 337,
338, 339, 341, 343, 344, 374, 386, 392, 393,
439, 456, 461, 463, 464, 471, 477, 478, 479,
481

environmental 333

epoch 208

epub 477

eq__ 288,449

equal 83,184, 263, 264, 309, 437, 438,
449, 451, 467

equality 263, 449

error 26, 65,79, 126,127,153, 159, 177,

INDEX

178,179, 180, 181, 183, 184, 185, 186, 188,
191, 201, 202, 203, 204, 205, 212, 214, 215,
218, 224, 226, 227, 237, 238, 253, 254, 255,
257,258, 259, 260, 279, 280, 281, 289, 312,
314, 315, 323, 347, 348, 384, 398, 457, 458
error_ 260

error_logger 259, 260

errors 21,52,79,91, 119,120, 134, 170,
177,178, 180, 181, 185, 188, 192, 199, 202,
203,204, 212, 216, 225, 231, 239, 253, 254,
256, 257, 258, 259, 260, 278, 293, 294, 310,
312, 314, 315, 316, 322, 323, 348, 356, 453,
459

ethernet 462

eval 26, 446

evaluate270, 271, 272

evaluates 50, 66, 281, 312

evolve 304

exact 30, 57,75, 135,145,179, 217, 331,
376, 395, 463

exception 188, 201, 202, 203, 204, 214, 215,
218, 253, 254, 255, 256, 257, 258, 259, 348
exceptionl 254

exceptions 204, 253, 254, 255, 256, 257,
258, 259, 280, 322, 457, 476

exceptiontype 255

exclude 200

excludes 86, 256

exe 52

executable 32,53, 54, 59, 60, 61, 169,
228,232

executables 227,228

execute 19, 23, 28, 29, 53, 85, 148, 158, 182,
204, 206, 207, 208, 237, 238, 239, 240, 285,
286, 290, 296, 322, 323, 324, 327, 337, 339,
341, 342, 343

execute_command 237

executed 30, 54, 81, 168, 228, 253, 325, 353
executes 40, 52, 54, 324, 343

executing 54, 78, 85, 174, 206, 232, 237, 238,
279,282,283, 314, 323

exist 36,112,119, 120, 126, 127, 128,
196, 198, 199, 203, 204, 212, 216, 230, 2306,
237

exist_ok 200, 202

existence 112,199, 212

exit 24,33,51,91, 92,182, 190, 192,
224,347, 348, 349, 380, 381, 382

exits 83,92, 347, 382

exp 264

expand 322, 368, 370, 376, 463

expanded 399, 400

exponent 76

exponential 264

export 213,228, 336

ext 480

extend 38, 71,98, 121, 247, 260, 277, 283,
327,350, 351, 354, 442, 452
extract_to201, 202

extract_valid_emails 251, 252

extrapolate 235

F
factor 283, 449

PYTHON UNLEASHED RASPBERRY PI

factorial184, 185, 186, 286, 287, 289
factorials 184, 288

fail 239

failed 224, 226, 457

false 40, 69, 83, 85,91, 98, 112, 183, 186,
224,268,270, 271, 272, 273, 368, 377, 379,
404, 407, 408, 417, 418, 438, 449, 466, 467
familiar 26, 91, 155, 197

fAll 419
fo 365, 366, 367
fib 59,188

fibonacci 288

field 13,338, 341, 370, 371, 373, 412, 454
fieldnames 215

fields 261, 304, 362, 373, 454, 455

fifo 145, 148, 149, 150, 153
file_handler 259

file_info 207, 208, 209

file_list 236

file_path 205, 214, 215, 218, 381, 382
file_stat205

file_to_change 206, 209

file_to_check 199

filed 338

filehandler 259

filemode 208, 209

filenotfounderror 196, 203, 204, 214, 215,
218, 224, 236, 237

filername 225

files 25,28, 30, 31, 32, 33, 50, 51, 52, 62,
78,96, 169, 171, 172, 195, 196, 197, 198,
199, 200, 201, 203, 204, 205, 206, 210, 211,
212,213,219, 220, 221, 223, 226, 228, 230,
231, 232, 235, 2306, 238, 239, 240, 253, 260,
278,288,291, 313, 322, 324, 333, 335, 338,
340, 341, 342, 343, 381, 384, 389, 417, 418,
419, 463, 477, 478, 479, 480

filesystem 229

fillvalue 100, 143

filter 101, 123,282, 387, 469

filtered 107

find 14,17, 21, 25, 26, 28, 29, 30, 32, 33,
35,48, 57, 58, 62, 69, 70, 93, 100, 101, 103,
104, 105, 106, 110, 112, 123, 124, 125, 128,
133,169, 185, 190, 213, 227, 231, 232, 233,
234,241, 242, 245, 246, 247, 250, 263, 276,
278,292,304, 310, 313, 315, 328, 348, 376,
381, 383, 3806, 391, 406, 410, 464, 471, 477,
479

findall 241, 242, 244, 248, 251, 252
finding 105, 125, 126, 183, 241, 289, 466
flac 381

flag 273,316

flags 205, 243, 273, 274, 342

flake8 294, 312,313

flask 3806, 456, 470, 471, 472, 473, 474
flask_app 474

flip 72,73,74, 97,135, 270, 377, 378,
380, 381, 382, 383, 386, 387, 389
flip_left_right 387

flip_top_bottom 387

float 63,78, 87,129, 188, 191, 193, 262,
347,409, 419, 476

float128 407

float16 407

float32 407

float64 407, 408, 409

float_array 408

font 364, 365, 366, 367, 368, 375, 376,
377,378, 380, 387, 388, 389, 472

font_size 119, 375, 376, 377, 378

fonts 375,377, 378, 384, 387, 389
fontsize436, 437, 438, 439, 442

form 2, 54,65, 67, 68, 134, 310, 317, 322,
412, 464

format 26, 53, 66, 78, 114, 196, 201, 208,
209, 219, 220, 221, 222, 223, 240, 251, 254,
312, 313, 316, 317, 326, 342, 358, 359, 360,
361, 364, 365, 376, 381, 382, 386, 387, 393,
415,417,419, 429, 453, 454, 455, 460, 477
format_permissions 205

formats 14, 201, 213, 221, 251, 358, 359,
365, 386, 418, 434, 460, 477
formatted_datetime 359

formatter 259, 312, 313, 317

forth 318,430

fortran 18

found 19, 78, 106, 120, 133, 196, 204, 214,
215, 218, 224, 227, 242, 244, 245, 246, 247,
291, 292, 388, 389

frame 371, 372, 373, 380, 383

frames 370, 371, 372, 373, 378, 383, 439
framework 16, 17, 353, 374, 470
frameworks 16, 18, 354, 386, 470, 471
fromtimestamp205

front_element 152

frozenset 123,124, 126

fruit 57, 82, 84, 87, 88, 272

func 284, 285, 286, 287, 296, 354
func_obj 469

function 37,41, 45, 46, 47, 49, 56, 64, 65,
66, 67,75,76,77,78,79, 81, 84, 86, 87, 88,

92,94, 96, 100, 103, 106, 114, 115, 122, 130,

131,133, 135, 138, 139, 140, 141, 144, 147,
153,157, 164, 165, 178, 181, 182, 184, 187,
188, 190, 191, 192, 198, 200, 201, 207, 209,
210, 211, 218, 220, 222, 224, 241, 242, 243,
244,245,251, 260, 264, 265, 276, 277, 278,
279, 280, 281, 282, 283, 284, 285, 286, 287,
288, 289, 290, 291, 292, 293, 294, 295, 296,
297,315, 321, 322, 325, 326, 348, 349, 351,
354, 359, 364, 365, 366, 367, 368, 380, 382,
386, 387, 389, 394, 397, 398, 401, 417, 440,
4406, 447,449, 457, 458, 459, 460, 466, 467,
468, 469, 470, 476, 478

function_name45

functional 101, 172, 380, 445

functions 19, 30, 45, 46, 47, 48, 56, 64, 75,
79,90, 91,92, 112, 113,131, 132, 134, 137,
138, 140, 144, 181, 182, 206, 208, 211, 213,
219, 220, 238, 241, 242, 243,261, 262, 264,
265, 266, 269, 270, 274, 276, 277, 278, 279,
280, 281, 282, 283, 284, 285, 286, 287, 289,
290, 291, 293, 294, 295, 297, 308, 315, 322,
346, 350, 351, 354, 358, 359, 364, 383, 384,
388, 395, 396, 400, 431, 444, 448, 449, 460,
462, 463, 466, 467, 468, 469, 477, 480
functools 288

fundamental 22, 35,44, 113, 115, 145,
199, 207, 264, 266, 278, 281, 421

G

gained 304, 334

game 20, 22,192, 228, 352, 374, 375, 370,
377, 378, 379, 380, 381, 383, 384, 386
gameplay 384

gatekeeper 273

gateway 21

geany 169, 316, 320, 321, 322, 323, 324,
325, 326, 327, 328, 334, 335, 337, 338, 339,
340, 341, 342, 343, 466

generate 90, 110, 283, 333, 410, 417, 425,
430, 433, 440, 441, 453, 456, 461, 477, 478,
480

generate_squares 290

generated 54, 340, 380, 453, 480

geodetic 442

geographic 442

get_choice 192

get_coordinates 136
get_name_and_age 135

get_pos377, 379

get_rect377, 379

get_value 478

get_weather_data 457, 458, 459

getattr 468, 469

getewd 50, 205, 238

getlogger 259

getmtime 240

gets 21,30, 32, 51, 53, 54, 66, 68, 69, 77,
98, 104, 146, 171, 187, 188, 200, 227, 233,
253,297, 337, 376, 467, 472

getsize 240

getsizeof 118, 346, 349

ghz 15,16

github 312

global 64, 78,174, 228, 229, 234, 278, 279,
280, 281, 283, 291, 292, 293, 294, 295, 296,
342,343,463

global_value 295, 296

global_variable 280, 281

google 18, 224, 264, 376, 389, 461
google_maps 223, 224

gpio 21, 462, 463, 464, 465, 470

gpiod 463

gpiozero 464, 465

gpu 462

graphic 2

graphics 15, 54, 304, 362, 364, 3606, 368,
370, 372, 382, 386, 387, 439, 462

graphs 288, 434

grasp 35,95,120

grayscale 387

grayscale_image 387

grep 168

group 25,118,133, 207, 208, 242, 245,
2406, 247, 249, 250, 252, 311, 332, 338, 370
377, 379, 383, 427, 447

gui 15, 362, 368, 370, 371, 373, 384
guido 18, 310, 311

guis 368, 370, 434

>

INDEX

H

hardware 16, 21, 53, 54, 57, 274, 462, 463,
464, 465, 470

hash 30, 46, 109, 114, 115, 121, 123, 157,
274

hashable 132, 136

hashed 157

hashing 274

hat 179, 357, 463, 464

heap 156

heatmap 439

heterogencous 94, 412, 413, 429
hierarchical 288, 431

hierarchy 256, 352

high 13,15, 19, 213, 289, 355, 461, 464,
465

histogram 437, 440, 441, 443

histogram2d 440, 441

homogeneous 121, 412, 413, 431, 432
host 223,224, 225 471,473

hr 118, 420

html 471,472,473, 477, 480, 481

http 454, 457, 459, 472

https 248, 456

hub 452,462

hyperbolic 264

I

iana 360

ice 414, 416

icon 27,28, 59, 454

icons 26, 27,182

id 156, 207, 293, 417, 418, 454
identifier 132, 156, 207, 278

ides 52,294, 316, 320

idle 320

ignore 316, 455

ignorecase 243

iloc 423,425, 426

imag 262

image 320, 321, 377, 378, 379, 384, 380,
387, 388, 389, 390, 391, 440, 480
imagedraw 387, 388, 389
imageenhance 387

imagefilter 387

imagefont387, 388, 389

images 374, 384, 3806, 387, 391
imaginary_part 262, 263

immutability 101, 107, 130, 133, 137, 138
immutable 78, 87, 94, 123, 124, 1206,
128, 129, 132, 134, 135, 136, 137, 139, 140,
156, 162

immutable_set 126

implementation 15,16, 147, 148, 152,
312

implied 2, 58

implies 152, 396

importerror 232, 348

inaccessible 203, 280

inaccuracies 391

include 20, 23, 40, 62, 64, 66, 68, 81, 94,
107,123, 129, 134, 135, 139, 181, 182, 189,

PYTHON UNLEASHED RASPBERRY PI

200, 208, 213,228, 232, 233, 247, 258, 260,
291, 311, 316, 318, 342, 359, 434, 454, 468
increment87, 122, 266, 369

indent 222,237, 310

indentation 19, 85, 89, 90, 222, 311, 313,
316, 323, 342

indented 50

index 42,5769, 70, 84, 87, 88, 92, 94, 95,
102,103, 104, 105, 106, 115, 116, 118, 123,
133, 134, 138, 139, 145, 146, 147, 150, 151,
173, 216, 305, 406, 413, 417, 418, 420, 424,
431, 450, 471, 472, 473, 477, 478, 480, 483
indexed 95

indexerror 149

indices 88,102, 115,117, 305, 418
inheritance 35, 38, 41, 44, 55, 56, 354
inherited 40

ini 342

init 375, 376, 378, 381, 382
inner_function 182, 291, 292, 294, 295
inner_value 295, 296

inode 207

inplace 420, 421, 422, 426, 427

input 65, 67,79, 115, 122, 134, 144, 151,
152, 187, 188, 189, 190, 191, 192, 193, 203,
222,223, 249,253,254, 255, 257, 284, 308,
314, 317, 346, 358, 363, 364, 370, 371, 372,
373, 381, 467, 468

input_frame 371, 372, 373

input_image 389, 390

input_value 295,296

insert 103,152,178, 180, 199, 212, 324,
327,400, 401, 4006, 458, 479
insert_into_file 199

inserted 103, 199, 325, 406

inserted_array 400

inserting 102, 199, 324, 400, 401, 405
insight 14, 139

insights 304, 427

instance37, 38, 39, 43, 44, 47, 48, 56, 77, 97,
101, 109, 114, 116, 118, 123, 133, 134, 136,
162, 184, 195, 196, 201, 225, 241, 271, 282,
287,288,292, 304, 316, 325, 333, 346, 350,
352, 353, 354, 444, 449, 451, 461, 471, 478
instantiate350, 357

instantiated 357

instantiation 47

int 77,188, 189, 190, 191, 192, 254,
262, 266, 409, 420, 467, 468

intl6 406, 410

int32 4006, 407, 408, 409, 410

int64 405, 406, 407, 409, 410, 413

int8 406, 409, 410

int_ 407,408

int_array 408, 409

integer 63, 77,78, 87, 95, 107, 129, 134,
156, 161, 188, 190, 191, 193, 254, 262, 269,
273,274,275, 276, 405, 406, 407, 408, 409,
410, 419, 420, 421, 424

integers 115, 123, 128, 129, 133, 156, 162,
184,254, 274, 289, 403, 404, 409, 410, 412,
413,429, 431, 432,433

intel 190

intent 448

interpolation 387, 419

interpret 206

interpreter 23,29, 30, 51, 52, 54, 59, 60,
62, 168, 228, 229, 231, 234, 291, 322, 327,
341, 477

interpreterpath 327

interpreters 52

intersection 123, 124, 125, 128
intersection_result 124

invalid 79, 188, 192, 245, 254, 255, 315, 459
invalid_json 226

invaluable 304, 310, 349, 370

invoke 343

invokes 168

ioerror 203, 204, 388

iot 20, 452, 470

ip 275,453, 471,472,473

ipsum 327
ironpython 16
is_ 467, 468

is_authenticated 273
is_empty 146, 147
is_equal268

is_even 183, 186

is_greater 268

is_prime 466, 467, 468
is_raining 272

is_subset 127

is_sunny 272

is_superset 128

isbn 2

isinstance 79, 263

isnull 424, 425, 427

isolate 174,175, 274, 461, 463
isolated 169, 228, 327, 332, 334
iterable 71, 84, 88, 113, 126, 139, 142, 263,
450

iterables 140, 143

iterdir 230

itertools 100, 142, 143

J
java 16,17, 320

javascript 16, 17, 219

jazzed 3006

join 65,68, 70,71, 72, 104, 205, 240, 456
joined 230

joining 70, 72, 230

jpeg 386

irg 387, 389, 390

json 213,215,217, 219, 220, 221, 222,
223,224, 225,226, 237, 453, 454, 455, 457,
459

json_data 220

json_file 221,222

jsondecodeerror 224, 226

jupiter 217,219, 414, 415, 417

K

kernel 32, 33, 464

key 14,19, 22,23, 24,28, 35, 38, 45, 50,
53, 54, 55,76, 79, 85,93, 94, 109, 110, 111,

112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 123, 126, 128, 130, 131, 132, 135, 136,
137,139,148, 150, 151, 157, 161, 175, 181,
189, 190, 193, 195, 213, 215, 216, 217, 219,
223,224, 226,239, 242,259, 272, 282, 287,
296, 304, 323, 333, 342, 346, 358, 362, 402,
404, 412, 416, 418, 419, 420, 423, 430, 432,
434,453, 455, 456, 457, 458, 459, 460, 461,
471, 477

keyboardinterrupt 256

keyerror 127,226

kwargs 76, 285, 286

L

lambda 120, 277, 281, 282, 296
lanczos 387

large_file 210

large_int_array 409

large_list 118

last_element 150
last_modified 205

latitude 441, 442

latitudes 442

latter 316
led 465
leds 464, 465
legb 291

len 100,103, 112, 133, 147, 150, 280,
307, 309, 347, 450

less 82, 83,145, 184, 231, 263, 271, 284,
290, 314, 317, 334, 429, 434, 449, 464, 467

lgpio 464
lib 32,62
lib64 32

libgpiod 463

libraries 17, 18, 19, 20, 21, 33, 48, 50, 57, 58
62,173,174, 209, 221, 223, 228, 229, 261,
293,310, 311, 332, 386, 396, 430, 431, 434,
435,463, 464, 465

library 20, 32, 48, 49, 51, 56, 57, 148, 152,
155, 174, 206, 229, 232, 314, 324, 331, 350,
362, 374, 388, 392, 393, 420, 423, 424, 430,
439, 441, 454, 459, 463, 464

librecale 213,214

libreoffice213

lifo 145, 146, 147,152

linked 342, 373, 470

Pandas 294, 310, 312, 313, 316, 317, 319,
323,337

linterl 314

linux 20

lipsum 327, 329

lisp 18

list_current_directory 205

list_example 117

list_of_lists 106

list_string 131

list_with_duplicates 125

listdir 50, 205, 236, 238

listed 228,231, 232, 313, 384, 478

listing 51, 206, 236, 254

listings 5, 335

lists 38, 82, 91, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104, 105, 106, 107, 110,

>

INDEX

115, 116, 117, 118, 119, 121, 123, 128, 129,
130, 131, 133, 136, 137, 138, 139, 140, 141,
142,143,150, 151, 155, 156, 157, 159, 160,
161,162, 163, 164, 165, 171, 215, 216, 217,
218, 220, 240, 305, 306, 311, 326, 337, 396,
397, 413, 414, 415, 416, 417, 418, 424, 432,
449, 453

lists16 101

literal 247, 250, 251

llo 248

load 28,30, 169, 187,192,197, 210, 220,
221,223,224, 318, 335, 343, 381, 382, 384,
386, 387, 388, 389, 390, 418, 479
load_config 224

load_default 388

loaf 68

loc 423,424, 425,426

local 58,60, 64, 78, 227, 228, 229, 278,
279, 280, 281, 290, 291, 292, 294, 295, 296,
358, 361

local_variable 280, 281

locale 48

localhost 223, 224, 225

log 23,196, 209, 223, 225, 228, 254,
259, 260, 264, 269, 270, 273, 284, 285, 447,
455

log10 264, 270

log10_value 270

log_decorator 284, 285

log_file 259, 447

log_file_path 223

log_level 223

log_person_details 447

log_to_file 223

log_value 269

logarithm 264, 276

logarithmic 269

logarithms 261, 264, 269, 270

logger 259, 260

logging 223, 225, 226, 255, 258, 259, 260,
284,285, 446, 447, 470
logging_interval_seconds 225

logs 33,65, 172, 259, 260, 285, 287, 291
long 14,21, 41, 67, 83, 95, 163, 187, 216,
234,279, 286, 315, 464

loop 26, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 96, 100, 113,122, 138, 141, 142,
143,182, 188, 190, 196, 309, 363, 364, 365,
366, 367, 370, 371, 372, 377, 378, 379, 381,
382, 383, 460, 467

Is 52,169, 237, 238

Ist 450

Istat 207

Isvirtualenv 337

M

main_window 367, 368

mainloop 363, 364, 365, 366, 367, 368, 369,
371, 372, 373

mainly 15, 288

make_ 201

make_archive 201

makedirs 200, 202, 239

makefile 324

mask 276

PYTHON UNLEASHED RASPBERRY PI

masking 274

masks 274,276

match 64, 68,75, 116, 132, 181, 225, 241,
242,243 244, 245, 246, 247, 249, 250, 251,
293, 305, 308, 366, 394, 398, 399, 400
matchl 244

match_dollar 250

match_percent 250

match_word 250

matched 134, 242,243, 245, 247

matches 85,241, 242, 243, 244, 246, 248,
249,250, 251, 253

matches_ 248

matches_any 248

matches_digits 248

matches_either 248

matches_email 248

matches_non_ 248

matches_non_digits 248
matches_non_words 248
matches_start 248

matches_url 248

matches_whitespace 248

matches_word_ 248
matches_word_boundary 248
matches_words 248

matchobject 243

mate 23,135

math 48,49, 56, 116, 188, 261, 262, 263,
264, 265, 267, 268, 269, 270, 271, 273, 275,
276,293, 3006, 368, 369, 439, 468, 469
math_ops 56

matplotlib330, 332, 427, 431, 434, 435, 430,
437,438, 439, 440, 441, 442, 443

matrices 304, 305, 306, 307, 308, 392, 393,
394, 410

matrix 89, 304, 305, 306, 307, 308, 309,
393,394, 395, 397, 398, 403, 404, 405, 410,
429,432,433

max_result 263

maxdepth 480

mean 13, 35,42, 53,75, 96, 173, 281, 300,
350, 395, 396, 419, 420, 422, 425, 426, 427,
429, 430, 432, 433, 440

mean_age 422

mean_columns 395, 396

mean_rows 395, 396

mean_total 395, 396

mean_value 396

meana 395

memory 15,16, 67,78, 94, 95, 110, 117,
118, 135, 137, 140, 145, 151, 156, 158, 159,
160, 196, 210, 274, 275, 277, 289, 290, 291,
305, 346, 398, 402, 403, 404, 409, 410, 431,
432,462

menu 25,27, 28,29, 30, 60, 62, 182, 192,
318, 320, 322, 323, 337, 342, 343, 366, 367,
372,373,383

menus 26, 58, 362, 368, 372

merge 120

merged_dict 120

merits 312

meta 244,472

metacharacters 247, 248

metaclass 350, 353, 354

metaclasses 353, 354

metadata 156, 205, 206, 207, 208, 288, 476
metaphorical 178

method 28, 36, 37, 38, 40, 41, 42, 43, 44, 47,
49, 55, 56, 59, 65, 67, 68, 69, 70, 71, 72, 73,

75,78, 98, 104, 105, 106, 111, 112, 113, 119,

122,126, 128, 133, 145, 147, 151, 169, 170,
171, 174, 192, 198, 199, 200, 201, 216, 222,
226,229, 241, 242, 260, 287, 288, 291, 334,
351, 352, 353, 355, 356, 359, 361, 363, 364,
365, 360, 369, 370, 373, 388, 389, 390, 393,
402, 406, 418, 419, 421, 422, 426, 428, 430,
444, 445, 4406, 447, 449, 450, 451, 476
methods 35, 36, 37, 38, 39, 40, 41, 42, 44,
47,55, 56, 65, 67,70, 71, 72,79, 94, 111,
113, 114, 116, 121, 126, 132, 133, 136, 138,
140, 147,159, 170, 195, 196, 200, 210, 216,
229,283, 287, 288, 350, 351, 352, 354, 357,
383, 387, 391, 393, 403, 404, 405, 413, 419,
423,425,427, 428, 431, 432, 444, 446, 447,
448, 449, 450, 477

metric 454, 457, 459

mhz 15

microchip462

microcontroller 16

microcontrollers 16

micropython 16

microseconds 359

microthreads 16

middle 145, 199, 212, 362

min 100, 225, 263, 426

min_ 100
min_length 100
min_result 263

mind 19,22, 35, 59, 70, 82, 85, 95, 199,
233,261,262, 313, 315, 318, 320, 419
mkdir 167, 238, 239, 336, 472, 479
mkproject337

mbkvirtualenv 336

mnt 32

mo 267,323

mode 181, 182, 195, 196, 198, 205, 207,
208, 209, 224, 225, 244, 382

model 15,16, 27, 35, 41, 114, 304, 445,
446, 464

modelling 269

modifiers 247

module 30, 33, 48, 49, 51, 56, 100, 119, 142,
148, 149, 150, 153, 155, 161, 162, 167, 168,
169, 200, 206, 207, 208, 209, 210, 212, 213,
216, 219, 225, 229, 231, 232, 233, 234, 235,
236, 237, 238, 239, 240, 241, 242, 244, 251,
259, 261, 262, 264, 265, 268, 269, 270, 276,
278, 280, 288, 291, 305, 306, 314, 315, 323,
330, 333, 344, 346, 347, 348, 349, 350, 351,
352, 354, 355, 356, 357, 358, 359, 360, 361,
363, 364, 368, 374, 376, 382, 386, 387, 389,
391, 392, 413, 439, 440, 463, 464, 466, 467,
468, 469, 476, 480

modulo 88, 183

modulus 262, 268

modulus_result262

move 20,22, 57,58, 81,167, 181, 182,

200, 239, 276, 277, 278, 326, 363, 374, 375,
376, 378, 430, 470

mp3 381,382

mpl_toolkits 440

mplot3d 440

msgs 315

multiplexer 474

multiplication 101, 262, 267, 305, 308, 309
393, 394

multiplication_result262

mutability 138

mutable94, 102, 116, 123, 128, 129, 130,
131, 133,135, 137, 138, 140, 156, 162, 283
my_ 127,233

my_age 63

my_archive 202

my_custom_bin 233

my_decorator 284, 354

my_deque150, 151, 152

my_dict111, 116, 120, 126, 131, 136
my_directory 202

my_house43

my_list 95,102, 103, 104, 105, 106, 116,
118, 130, 138, 139
my_list_with_duplicates 118

my_name 63

my_python_modules 234
my_queue148, 149

my_scripts 234

my_set 123,125, 126, 127, 128
my_string 131

my_tuple 129, 130, 131, 136, 138
my_var 333

my_variable 293

myapp 223

myapp_db 223

myclass 293, 353

myenv 173,229, 331

mypy 312

>

N

namespace 278, 279, 281, 293
namespaces 278, 281, 293
nan 431

nano 472

narray 399, 406

nbytes 409

ncase 257

ncustom 348
ndescriptive 423
ndetecting 424
ndim 403, 404, 405
ndropping 424
nested_dict 117
nested_list 106, 131
nested_tuple 131
nesting 85, 162
new_car 446
new_content 199
new_directory 233, 238
new_list 159, 160
new_listl 99
new_name 198, 238
new_window 367

INDEX

new_x1369

new_x2369

new_yl 369

new_y2 369

new_york 360

newline 82, 83, 195, 214, 215, 218, 243, 244,
248

newlines 213

next 22,38, 43, 46, 50, 69, 72,78, 82, 83,
84, 93,101, 104, 126, 146, 160, 168, 182,
187,188, 209, 214, 218, 227, 277, 280, 290,
299, 324, 325, 326, 327, 330, 338, 341, 363,
364, 366, 368, 369, 373, 380, 382, 389, 398,
401, 404, 405, 420, 424, 426, 430, 442, 443,
457, 469

next_year_age 188

nextended 71

nfailed 348

nfetching 458

nfiles 230

nfilling 424

nfinal 72

nfirst 423

nhandling 424

ninja 1,2, 3,4, 11,13, 15, 300, 301, 302,
303, 309, 463, 482, 484

notnull 425

np 392,393, 394, 395, 396, 397, 398,
399, 400, 401, 402, 403, 404, 405, 4006, 408,
409, 410, 415, 425, 426, 428, 429, 430, 433,
440, 441

np_array 396

npivoting 424

nreshaped403, 404

nresult 399

nselecting 423

nshape 403, 404

nsorting 424

nstacking 424

nsuccessfully 348

nsum 403, 404

nsummary 423
nudged 103
nudging19

null 219, 426
num 76

numl 254,262, 263, 271, 272, 275, 276,
347

numpy 15, 18, 48, 261, 305, 306, 307, 308,
331, 392, 393, 394, 395, 396, 397, 398, 400,
401, 402, 403, 404, 405, 4006, 407, 408, 409,
410, 412, 413, 425, 426, 428, 429, 430, 431,
432,433, 434, 440

numpy_array 426, 430

nunstacking 424

nusing 71

nweather 458

ny_time_zone 360

o
obj 353,379

object 35,36, 37, 38, 39, 41, 44, 47, 56, 65,
67,77,78, 87, 113, 114, 126, 130, 136, 138,
141, 142, 155, 156, 157, 160, 161, 162, 163,

PYTHON UNLEASHED RASPBERRY PI

164, 165, 207, 210, 211, 219, 220, 221, 223,
229,230, 231, 242, 243, 290, 316, 326, 343,
350, 359, 360, 361, 364, 379, 380, 389, 407,
408, 413, 444, 445, 446, 447, 465, 469
object_array 408

occupy 276

oop 35, 38, 40, 42, 44, 47, 65, 67, 113,
114,136

open_button 367

open_garage 40, 43, 44

open_new_ 367

open_new_window 3606, 367, 368

opened 211, 320, 340

openweathermap 452, 453, 454, 456, 457,
459, 460, 461

operand 257, 267, 272

operands 267, 272, 273, 274

opt 32,116, 117

optimisation 274, 285

org 251, 252, 381, 454, 456, 457

origin 369

original_ 162

original_dic 119

original_list 155, 157, 158, 159, 160, 161,
162, 164

0s 16, 19, 24, 25, 31, 50, 51, 58, 170,
171,197, 198, 199, 200, 201, 202, 205, 206,
207,208, 209, 227,228, 231, 233, 234, 235,
236,237,238, 239, 240, 333, 346, 349, 479
oserror 205

outlines 36

28, 445, 4406, 449, 450, 454, 465, 477
output_from_dict 417, 418
output_from_lists 417,418

overflow 184, 289

P

package 57, 129, 133, 155, 168, 170, 171,
172,173, 174, 175, 201, 324, 328, 331, 333,
392,393, 466, 468

package_name 171, 173, 174, 175
packages 25, 32, 33, 58, 168, 170, 171, 172,
173,174,175, 228, 229, 232, 324, 330, 331,
344, 346, 347, 349, 392, 393, 456, 463
packed 33, 48, 140, 182, 201, 261, 276, 373
padding366, 371, 473

paddle 374, 375, 376, 377, 378, 379, 380
palindrome 151

pandas 17, 18, 48, 330, 331, 412, 413, 414,
415, 416, 417, 418, 419, 420, 421, 422, 423,
424, 425, 426, 427, 428, 429, 430, 431, 432,
434,435, 436, 437, 438, 439, 442, 443
parameter47, 66, 75, 76, 88, 213, 282, 283,
287, 363, 380, 395, 410, 415, 418, 427, 428,
478

parameters 45, 56, 77, 201, 221, 223,
284, 296, 453, 455, 459, 476

parsing 196, 209, 213, 226, 358

, 378, 383,392, 407, 427, 435, 477
password 223

path 22,199,201, 202, 205, 212, 218,
227,228,229, 230, 231, 232, 233, 234, 235,
236, 238, 239, 240, 318, 324, 325, 327, 337,
338, 341, 342, 346, 347, 348, 349, 381, 382,

388, 389, 390, 392, 416, 418, 468, 470, 479
481

pathl 230

path_patts 237

pathlib 229, 230, 231, 234

pattern 85, 89, 90, 241, 242, 243, 244, 245,
2406, 247, 248, 249, 250, 251, 252, 351, 352,
354, 355, 356, 383

pattern_dollar 250

pattern_percent 250

pattern_word 250

pause 27,181, 183, 290, 325, 375, 376, 384

>

pca 304

pcs 52

pdb 324,325,326

pdf 332,477

pdfs 477

pep 310, 311, 312, 313, 316
pep8 5

peps 310, 311, 319

permanently 228, 232

person_dict 114

person_list 447

person_log 447

pf 201

pico 16

pigpio 464

pihome 59

pil 386, 387, 388, 389, 390

pillow 386, 387, 388, 389, 390, 391
pillow_text_ 389

pillow_text_example 388

pip 168,170, 171, 173, 174, 175, 229,
313, 314, 324, 330, 331, 332, 386, 392, 439,
456, 471, 477

pip3 171,173, 174,175, 374

pipe 246

pipelines 291

pipenv 333

pipfile 333

pivot 419, 420, 421, 424, 425, 427
pivot_table 420

pixel 383

plaugins 329

play 38,57,73, 94,187, 375, 376, 381,
382, 384, 425

play_audio 381, 382

plot 427,428, 435, 436, 437, 438, 439,
440, 441, 442, 443

plotly 435

plt 435, 4306, 437, 438, 439, 440, 441,
442,443

plug 32,327

plugin 327, 328

plugins 327, 328, 477

png 386, 387, 388, 389, 390

point 13,14, 31, 54, 59, 86, 95, 135, 130,
146, 156, 168, 180, 183, 196, 262, 264, 275,
276, 287,290, 310, 313, 323, 324, 325, 334,
336, 367, 391, 395, 407, 408, 409

point2d 136

polymorphism 35, 38, 40, 41, 44, 448

pop 21,23,25,27,52,95,104, 105, 110,

111, 120, 126, 127, 145, 146, 147, 150, 151,
152,153, 253, 362, 364

popen 238, 239

popleft 149, 150, 151, 152

popped 127

popped_element 127, 147

port 223,225,471, 472,473

pos 377,379

pprint 457

practical 59, 142, 183, 196, 272, 284, 280,
355, 421, 446, 466

prefix 211,212

preprocessed 420

ptime 466, 467, 468

prime_factors 467, 468

prime_test 468

proc 32

process_data 210, 348

process_file 210

process_order 355, 356

product76, 184, 250, 251, 289, 309, 393, 436
product_result 285

programmatically 455

pseudo 322

psf 310

ptyhonpath 231

pull 93

push 145, 146, 147, 152

pvm 54

pycodestyle 312

pycon 311

pydaily 59, 60, 62, 167

pyflakes312

pygame 20, 374, 375, 376, 377, 378, 379,
380, 381, 382, 383, 384

pygamesound1 381

pylint 294, 312, 313, 314, 315, 316, 317,
319

pylint_test 315, 316

pypi 57,173
pyplot 435, 436, 437, 438, 439, 440, 441
pypy 16

python3 23, 24,25, 27, 33, 50, 52, 58, 167,
168, 169, 173, 174, 313, 322, 330, 331, 334,
336, 338, 392, 439, 456, 463, 472, 473, 474

python_version 349

pythonpath 227,229, 231, 232, 233, 234
pytz 331

pyvenv 62

Q

quad 15,16

quantifiers 249

query 453, 455, 459

query_params 457

queue 145, 147, 148, 149, 150, 152, 153
queues 93, 145, 147, 148, 149, 150, 151
quotechar 214, 218

quotient 267

R

radians 269, 270, 276, 369, 370
radius 41, 55, 143, 416, 417
ram 15, 16

randint 379, 380, 410, 429, 433

INDEX

random 32, 276, 374, 375, 376, 378, 379,
380, 410, 429, 430, 432, 433, 440, 441
range 18,48, 81, 82, 83, 84, 86, 87, 89, 90,
100, 102, 110, 118, 138, 177, 178, 179, 186,
216, 280, 286, 290, 297, 307, 312, 327, 332,
333, 349, 361, 364, 386, 406, 407, 428, 431,
433, 477

raspbian 16

raw 407, 414, 415, 419

read 19, 26, 30, 54, 85, 91, 140, 162, 163,
187,189, 195, 196, 197, 198, 199, 203, 204,
205, 206, 207, 208, 209, 210, 211, 212, 213,
215,219, 220, 221, 222, 223, 225, 238, 251,
287,288,291, 292, 295, 310, 322, 323, 354,
373, 415, 416, 418, 453

read_csv 416,417,418

read_csv_file 214,215

read_number 191

read_text 231

reboot 33, 62, 336

rect 377,379

recursive 90, 99, 288, 289, 296
redundancy 45, 50, 421

redundant462

regex 247,248

regexes 244

remainder 183, 268

remainders 268

remote 260

removal114, 172

rename 198, 212, 238, 426
render_template 471,473

repair 32

repeat 81, 90, 133, 182, 287, 406

repl 206,243

reports 65

repositories 57,172,173

repository172, 173, 312

repr 445, 446, 447

request 172, 453, 455, 457, 458, 459, 460,
461

requested 91, 459

reshape 403, 404, 405, 410, 425, 427
reshaped_array 403, 404

reshaping 419, 420, 421, 424, 427, 428
reside 338

resize 26, 363, 386, 387, 391, 398
resized_image 387

resolve 170, 184, 259, 291, 293, 389
resource 203, 253, 288, 383, 470
result_array 426, 430

result_exp 264

result_list 97

result_log 264

result_logl0 264

result_log_custom_ 264
result_log_custom_base 264
result_matrix 393, 394

result_pow_math 264, 265
result_pow_operator 265

reverse 41,73, 74, 86, 88, 134, 138, 140,
142,151

rgb 376, 387, 388, 389

rgba 387

rmdir 238, 239

PYTHON UNLEASHED RASPBERRY PI

rmtree 202, 239

rmvirtualenv 337

root 31,32, 56, 58,171,223, 228, 232,
265, 269, 276, 334, 368, 369, 370, 371, 372,
373, 468, 471, 472

rotate_button 368

rotate_line 369, 370

rotated_image 387, 390

rotatelineapp 368, 369

round 265, 268, 269, 276, 291

rounded 265

rounded_value 265

row 40,41, 81, 82, 83,92, 213, 214, 215,
216, 218, 221, 222, 305, 306, 307, 309, 395,
396, 398, 399, 400, 403, 404, 405, 410, 414,
415, 417, 418, 429, 430, 432, 433

row_sum 403, 404

row_sums429

rpython16

rst 478, 480

rw 205, 206

rwx 205

rwxr 209

S

s_ifdir 208

s_iflnk 208

s_ifreg 208

s_irgrp 208

s_iroth 208

s_irusr 2006, 208, 209

s_isdir 208

s_iwusr 206, 208, 209

s_ixust 208

sans 472

save 28,48, 101, 156, 221, 258, 260, 275,
316, 318, 324, 326, 331, 333, 336, 341, 347,
386, 387, 388, 389, 390, 402, 404, 416, 417,
418, 430, 466, 472, 473

sbin 32,227, 228,229

scalable 18, 91, 448

scalar 305

scale 17,18, 67,383, 387, 472

scales 79

scikit 17,431

scipy 18, 48, 261

scope 206, 27, 30, 64, 78, 175, 277, 278,
279, 280, 281, 282, 283, 291, 292, 296, 326
score 132,314, 374, 375, 378, 380, 381,
438

scratch 19, 38, 41, 172, 322, 481

screen 5,23, 25,206, 47,49, 68, 182, 313,
316, 320, 333, 364, 366, 368, 370, 374, 375,
376, 377, 378, 380, 381, 383, 461, 474
screen_height 375, 376, 377, 378, 379
screen_width 375, 376, 377, 378, 379
screens 383

scribble 322

script 20, 22, 26, 168, 174, 202, 215, 232,
233,234, 260, 274, 278, 280, 287, 291, 314,
316, 317, 323, 324, 325, 326, 327, 336, 341,
342,343, 346, 347, 348, 349, 382, 418, 468,
471, 474

sd 187

sdl 374

seaborn431, 439, 443

seaborne 439

segment 195

segments 19, 36, 241

select 27,28, 29, 59, 60, 61, 169, 192, 210,
320, 323, 338, 367, 372, 423, 425, 426, 452,
456, 464

sensor 225, 464, 470

sensor_thresholds 225

sentence 40, 70, 71, 72,121, 122
sentence_extended 71,72

sentence_join 71

sentence_plus 71

sentences 65, 121

separator 70, 71, 234

serial 32

set 22, 25,27, 37, 39, 48, 58, 59, 60, 64,
71,81, 87, 88,90, 91, 95, 122, 123, 124, 125,
126,127,128, 129, 130, 133, 138, 152, 167,
169,178, 181, 182, 183, 191, 203, 206, 207,
210, 231, 232, 233, 260, 261, 291, 317, 320,
323,324,327, 330, 331, 333, 334, 335, 330,
337,338, 339, 341, 362, 363, 364, 365, 3606,
369, 372, 375, 376, 377, 378, 382, 389, 444,
455, 456, 459, 470, 474, 478, 479
set_caption 375, 376, 377, 378, 381, 382
set_mode 375, 377, 378, 381

set_title 441

set_trace 324, 325

set_xlabel 440

set_ylabel 440

set_zlabel 440

setdefault 237

setformatter 259

setlevel 259

setmode 465

setrecursionlimit 346

sets 25,91, 119, 123, 124, 125, 126, 127,
128, 136, 172, 225, 244, 260, 274, 304, 332,
337,366, 370, 441, 444, 445, 446, 458, 471
setup 48, 57, 58, 167, 202, 259, 260, 262,
288, 324, 331, 343, 367, 373, 375, 376, 392,
442 452,459,462, 463, 465, 471, 478
setup_logger 259, 260
setvirtualenvproject 337

shadow 292, 392

shadow_example 292

shadowed 292, 295

shadowing 292,293, 294, 295, 296, 310
shadows 292, 294

shallow 119, 155, 156, 157, 158, 159, 160,
161,162, 163, 164, 165

shallow_ 164

shallow_copy 119, 155, 159, 160, 161, 162,
163,164

shallow_list 158

shut 91

shutil 200, 201, 202, 239

sin 265, 269, 270, 369

sin_value 269

sine 265, 276

slice 102,104, 129, 397

sliced 104

sliced_list 104

slicing 68, 73, 74, 102, 104, 130, 160, 161,
162, 397,413

sns 439

sOC 462, 463

sort 106, 118, 120, 138, 140, 251, 252,
282,361, 426, 456
sort_emails_by_type252

sort_values 424, 426

sorted 106, 118, 120, 206, 252, 282, 468
sorted_by_keys 120
sorted_by_values 120

sorted_data 282

sorted_emails 252

sorted_list 106

sorting 21, 105, 106, 117, 118, 120, 121,
138, 140, 282, 332, 360, 361, 415, 425
source 14,22, 54,169, 173, 200, 201, 202,
223,239,291, 293, 326, 330, 331, 336, 341,
343,351, 456, 479, 480

source_dir 201, 202

source_file 200

source_folder 201, 202

southbridge 4063

spellcheck328

spelling 310, 328

sphinx 476, 477, 478, 479, 480
sphinx_test 480

split 05, 68, 69, 72, 121, 122, 190, 237,
241, 252, 328, 329

sprite 377, 378, 379, 380, 381, 383
spritecollide 380

sprites 374, 380, 383, 384, 386
spritesheet 384

spritesheets 384

sq_root49, 56

sqrt 49, 506, 265, 269, 293

square 49, 50, 57, 95, 109, 115, 116, 219,
265, 269, 276, 290, 332, 342, 433

squares 290, 378, 429, 430

SrV 32

st_ 205

st_atime 208

st_ctime 208

st_dev 207

st_gid 207

st_ino 207

st_mod 207

st_mode 207,208, 209

st_mtime 205, 207, 208

st_nlink207

st_size 205, 207,208

st_uid 207

stack 21, 145, 146, 147,148,152, 153,
255, 260, 289, 424, 425, 427

stars 374, 375, 378, 380

start_engine 114, 357

start_heater 37

start_time286

startangle 437

statement 65, 66, 67, 69, 81, 82, 83, 84, 85,
88,105, 111, 134, 203, 231, 255, 258, 290,
397

std 440

INDEX

str 77,188, 191, 205, 255, 260, 293,
380, 446

str_ 408

strftime 205, 359, 361, 364, 365, 366, 457
string 40, 63, 65, 66, 67, 68, 69, 70, 71, 72,
73,74,77,78,79,91, 112,129, 131, 151,
156, 162, 188, 189, 190, 191, 192, 193, 196,
208, 210, 220, 223, 226, 241, 242, 243, 244,
245,246, 247, 248, 249, 257, 262, 289, 358,
359, 361, 365, 407, 408, 415, 444, 445, 440,
450, 451,473

string_ 407

stringvar 372, 373

strip 79, 192, 196, 210

sub_list 102

subclass350, 351, 356

subclasses 256, 288, 350, 351, 352, 355, 356,
357

subclassing 255

subplot 443

subprocess 237,238, 239

subtraction 96, 97, 101, 262, 266, 267,
305, 307, 308, 393

subtraction_result 262

sudo 24,25 171,173, 313, 328, 335, 392,
456, 472,473, 474, 477

sum 54,56, 197, 263, 282, 286, 287, 296,
297,307, 314, 317, 347, 348, 403, 404, 405,
410, 427, 429, 430, 432, 433, 478
sum_result 263, 285

swap 102,221

swapcase 72,73

symbol 30, 46, 179, 321, 351

symmettic 123,124,127,128
symmetric_ 124,127
symmetric_difference 126
symmetric_difference_ 127
symmetric_difference_result 124, 127
sympy 48

sync 477

syntax 19, 30, 45, 74, 77, 86, 134, 177, 180,
185, 189, 247, 281, 284, 287, 291, 294, 297,
314,322,323, 351, 354

sys 33, 118, 234, 339, 346, 347, 348,
349, 381, 382, 468, 479, 481

sysfont 375, 377, 378

system 106, 17, 18, 25, 27, 28, 31, 32, 33, 37,
51, 52, 54, 57, 58, 67, 120, 168, 169, 170,
171,172,173, 175, 190, 197, 205, 206, 207,
211, 212, 215, 221, 227, 228, 229, 231, 232,
235,237,238, 239, 240, 259, 333, 334, 335,
337, 3406, 349, 382, 388, 392, 414, 452, 462,
463, 474, 477

systemexit 256

systems 16, 18, 20, 21, 32, 51, 58, 145, 173,
207,219, 221, 223, 234, 304, 358, 386, 407

T

tan 269, 270
tan_value 269
tap 50

tar 201

target 138, 383
tau 265

PYTHON UNLEASHED RASPBERRY PI

tau_value 265

temp 212, 454, 455, 458, 460

temp_dir 211

temp_file 211, 212

temp_max 454

temp_min454

temp_unit 457, 459
temperaturelogger 225

tempfile 210, 211, 212

tensorflow 18

terminal 23, 24, 29, 30, 33, 50, 51, 54, 62,
167,169, 171, 215, 228, 232, 233, 315, 316,
320, 321, 322, 326, 330, 335, 336, 362, 363,
384, 455, 474, 480

text_height 388

text_to_insert 199

text_width 388

textbbox 388, 389

textenv 336

thonny 25, 26, 27, 28, 29, 30, 31, 33, 50, 54,
58, 59, 60, 62, 167,169, 173, 177, 179, 180,
181, 182, 183, 184, 185, 205, 294, 310, 316,
318, 320, 322, 324, 330, 333, 334, 384, 392,
393, 466

thony 179,181,185

threaded 148, 150

tick 364, 377, 379, 383

ticker 151

time 13, 14,18, 19, 20, 21, 22, 28, 29, 30,
32,35,43,48,49, 52, 53, 54, 63, 77,78, 79,
91, 95,101, 114, 121, 123, 141, 142, 151,
152, 160, 167, 169, 171, 181, 184, 188, 195,
201, 205, 206, 207, 208, 239, 240, 283, 285,
286, 287, 290, 296, 297, 304, 313, 314, 316,
322,324, 328, 335, 337, 338, 342, 343, 350,
358, 359, 360, 361, 363, 364, 365, 366, 370,
375, 376, 377, 378, 380, 383, 384, 398, 419,
430, 431, 435, 436, 445, 456, 457, 458, 459,
462, 463, 465, 471, 481

timed 297

timedelta 359, 408

timedelta64 408

timedelta_array408

timer_decorator 286, 287, 296, 297
timestamp 260, 457, 458, 459

tin 19, 66, 269

tk 362, 363, 364, 365, 366, 367, 368,
369, 371, 372,373

tkinter 362, 363, 364, 365, 366, 367, 368,
370, 371, 372,373

tmp 33
tmux 474
to 426

to_csv 417,418
to_entertainmentroom 36
to_numpy426, 430

toctree 480

toggle 273, 368, 369

trace 182, 255, 260, 346
traceback 255

traits 140

transparency 387
transport 201

tree 200, 201, 202, 327, 328

trig 264
truetype 388, 389
ttf 388, 389
ttk 367

tuple 71, 84,87, 94,129, 130, 131, 132,
133, 134, 135, 1306, 137, 138, 139, 140, 143,
144, 189, 190, 193, 282

tuple_string 131

typeerror 87, 96, 136, 257, 280, 350, 357
types 16, 38, 39,42, 52, 63, 81, 83, 93, 94,
109, 111, 116, 129, 138, 148, 155, 162, 177,
185, 192, 193, 207, 220, 251, 252, 254, 257,
277,279, 293, 296, 342, 355, 372, 373, 400,
407, 408, 409, 410, 412, 413, 414, 419, 420,
421, 426, 427, 428, 429, 431, 432, 435, 439,
448, 471,476

tzdata 331

U

uintl6 407

uint32 407, 408

uint64 407

uint8 407

uint_array408

unicode407, 408

unicode_array 408

union 123, 124, 128

union_result 124

unique 39, 40, 45, 52, 57,75, 109, 110, 114,
115, 116, 117, 123, 125, 128, 132, 135, 136,
140, 152, 153, 156, 281, 282, 296, 312, 421,
444, 453, 455, 470, 471

unique_keys 117

unique_list 125

unique_set 125

unique_to_ 125

unzip 142, 201, 202

unzip_archive 201, 202

update 24, 25, 48, 58, 126, 127, 132, 140,
171,196, 198, 216, 221, 233, 267, 316, 327,
328, 364, 365, 366, 373, 375, 377, 378, 379,
383, 389, 422, 456, 468, 480
update_datetime 364, 365, 366

upper 60, 314, 316, 317

upper_case 315

url 454,459, 470, 471

urlencode 457

urllib 457

urls 248,453

usb 32,462

usr 27,33, 58,172, 227, 228, 229, 334,
336

usual 50, 112, 253

v

validate 188, 251

24, 425, 427, 449, 450, 476, 478
valueerror104, 106, 133, 178, 188, 191, 254,
255, 280

var 33,223, 326

variable 33, 47, 63, 64, 65, 66, 71, 73, 74, 76,
77,78,79, 83, 87,91, 133, 134, 156, 181,
187,191, 227, 228, 229, 231, 233, 234, 259,
266, 267,273,278, 279, 280, 281, 282, 291,
292,293,294, 295, 296, 297, 315, 321, 324,
325, 326, 333, 335, 364, 372, 396, 397, 400,
417, 432, 459, 460

variable_name 326

vector 304, 305, 448, 449

venv 167,168, 169, 170, 173, 175, 228,
324,330, 331, 333, 338, 341, 343, 344, 456
verbose 244

version 23, 24, 25, 26, 27, 28, 33, 40, 46, 57,
58, 59, 60, 62, 73, 74, 82,123,126, 167, 168,
169, 173,174,175, 179, 184, 223, 289, 326,
328,331, 332, 333, 334, 344, 349, 361, 388,
392, 421, 463, 479

vert 438

vertically 387

via 28, 37,062,169, 171, 318, 333, 341,
342, 355, 356, 415

virtual 28, 32, 33, 54, 57, 58, 59, 60, 61, 62,
167,168, 169, 170, 173, 174, 175, 227, 228,
229,233, 234, 314, 318, 320, 323, 324, 320,
327,330, 331, 332, 333, 334, 335, 336, 337,
338, 339, 341, 343, 344, 374, 386, 392, 393,
439, 4506, 463, 464, 471, 474, 477, 478, 481
virtual_env 233

virtualenv 335

virtualenvs 336

virtualenvwrapper 335, 336
virtualenvwrapper_python 336

virtualvens 336
void 407
W

wav 381, 382

weather_api 223

weather_data 454, 455, 457, 458
weather_history 458, 460
weather_record 457, 458

web 17,20, 22, 32, 219, 221, 225, 380,
452, 454, 456, 470, 471, 472, 474, 477, 480
whatis 326

wheel 48

whenever 30, 48, 64, 93, 174, 282, 330, 353
wipe 105

wiped 33

word 13,47, 63, 64, 68,72, 121, 122, 241,
242,243,248, 250, 251

word_count 122

workon 337
wotrkon_home 335, 336, 337
workspace 59

write 13,17, 18,19, 20, 21, 22, 26, 41, 45,
49,54, 64,79, 90, 91,92, 107, 134, 144, 193,
196, 197, 198, 199, 203, 206, 207, 208, 209,
211, 212, 213, 219, 220, 221, 222, 226, 234,
240, 244, 276, 278, 288, 293, 296, 306, 308,
313, 320, 328, 361, 374, 404, 410, 422, 432,
443,447,457, 464, 465, 468, 478
write_text231, 363, 364

writelines 196

www 14

WX 205

X

x_int 262
x_str 262

xml 453

XOr 274
xpos 440

Xt 206, 209
XX 293

Y

y_float 262
y_str 2062
ypos 440

Z
zerodivisionerror
zeros 274,309
zip

202

zip_ditectory 201, 202
zip_file_name 202
zip_file_path 202
zip_longest

INDEX

96,97, 101, 140, 141, 142, 143, 201,

zip_name 201

zip_path 201, 202

Zpos
zsort
ks

440
440
264, 265

100, 142, 143

.. BOOKS FOR YOUR
{ } RASPBERRY Pl

the The Coding Press brings you the latest in hands-
COdin on computer programming confidence. The Novice

to Ninja series caters to any beginner and will take
re S S you to a different level of programming — the
Ninja Programmer. Whether you'tre completely new
www.codingpress.comau t5 coding or have some expetience, our books
provide the foundation knowledge and practical skills needed to write your
own programs with clarity and confidence. With clear explanations and
example programs, you'll explore coding in a way you never imagined. Our

pages will transform you into a confident and capable programmer in the
genre they cover.

You'll pick up best practices for writing clean, efficient code and gain the
skills to debug and troubleshoot your programs effectively.

By the end of our books, you'll be equipped to tackle your own projects and
solve problems in the subject matter covered. Our books provide a gateway
to new ways of thinking and creating. Whether you're aiming to start a new
career, enhance your current skills, or simply take on a new hobby, our
Novice to Ninja guides will help you reach your goals. Step into the ongoing
future of programming and unlock your coding potential today.

WWW.codingpress.com.au

www.brucesmith.info

60

